Step |
Hyp |
Ref |
Expression |
1 |
|
galactghm.x |
|
2 |
|
galactghm.h |
|
3 |
|
galactghm.f |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
gagrp |
|
8 |
|
gaset |
|
9 |
2
|
symggrp |
|
10 |
8 9
|
syl |
|
11 |
|
eqid |
|
12 |
1 11
|
gapm |
|
13 |
8
|
adantr |
|
14 |
2 4
|
elsymgbas |
|
15 |
13 14
|
syl |
|
16 |
12 15
|
mpbird |
|
17 |
16 3
|
fmptd |
|
18 |
|
df-3an |
|
19 |
1 5
|
gaass |
|
20 |
18 19
|
sylan2br |
|
21 |
20
|
anassrs |
|
22 |
21
|
mpteq2dva |
|
23 |
|
oveq1 |
|
24 |
23
|
mpteq2dv |
|
25 |
7
|
adantr |
|
26 |
|
simprl |
|
27 |
|
simprr |
|
28 |
1 5
|
grpcl |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
8
|
adantr |
|
31 |
30
|
mptexd |
|
32 |
3 24 29 31
|
fvmptd3 |
|
33 |
17
|
adantr |
|
34 |
33 26
|
ffvelrnd |
|
35 |
33 27
|
ffvelrnd |
|
36 |
2 4 6
|
symgov |
|
37 |
34 35 36
|
syl2anc |
|
38 |
1
|
gaf |
|
39 |
38
|
ad2antrr |
|
40 |
27
|
adantr |
|
41 |
|
simpr |
|
42 |
39 40 41
|
fovrnd |
|
43 |
|
oveq1 |
|
44 |
43
|
mpteq2dv |
|
45 |
30
|
mptexd |
|
46 |
3 44 27 45
|
fvmptd3 |
|
47 |
|
oveq1 |
|
48 |
47
|
mpteq2dv |
|
49 |
30
|
mptexd |
|
50 |
3 48 26 49
|
fvmptd3 |
|
51 |
|
oveq2 |
|
52 |
51
|
cbvmptv |
|
53 |
50 52
|
eqtrdi |
|
54 |
|
oveq2 |
|
55 |
42 46 53 54
|
fmptco |
|
56 |
37 55
|
eqtrd |
|
57 |
22 32 56
|
3eqtr4d |
|
58 |
1 4 5 6 7 10 17 57
|
isghmd |
|