Step |
Hyp |
Ref |
Expression |
1 |
|
gass.1 |
|
2 |
|
ovres |
|
3 |
2
|
adantl |
|
4 |
1
|
gaf |
|
5 |
4
|
adantl |
|
6 |
5
|
fovrnda |
|
7 |
3 6
|
eqeltrrd |
|
8 |
7
|
ralrimivva |
|
9 |
|
gagrp |
|
10 |
9
|
ad2antrr |
|
11 |
|
gaset |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
12 13
|
ssexd |
|
15 |
14
|
adantr |
|
16 |
10 15
|
jca |
|
17 |
1
|
gaf |
|
18 |
17
|
ad2antrr |
|
19 |
18
|
ffnd |
|
20 |
|
simplr |
|
21 |
|
xpss2 |
|
22 |
20 21
|
syl |
|
23 |
|
fnssres |
|
24 |
19 22 23
|
syl2anc |
|
25 |
|
simpr |
|
26 |
2
|
eleq1d |
|
27 |
26
|
ralbidva |
|
28 |
27
|
ralbiia |
|
29 |
25 28
|
sylibr |
|
30 |
|
ffnov |
|
31 |
24 29 30
|
sylanbrc |
|
32 |
|
eqid |
|
33 |
1 32
|
grpidcl |
|
34 |
10 33
|
syl |
|
35 |
|
ovres |
|
36 |
34 35
|
sylan |
|
37 |
|
simpll |
|
38 |
20
|
sselda |
|
39 |
32
|
gagrpid |
|
40 |
37 38 39
|
syl2an2r |
|
41 |
36 40
|
eqtrd |
|
42 |
37
|
ad2antrr |
|
43 |
|
simprl |
|
44 |
|
simprr |
|
45 |
38
|
adantr |
|
46 |
|
eqid |
|
47 |
1 46
|
gaass |
|
48 |
42 43 44 45 47
|
syl13anc |
|
49 |
|
simplr |
|
50 |
|
simpllr |
|
51 |
|
ovrspc2v |
|
52 |
44 49 50 51
|
syl21anc |
|
53 |
|
ovres |
|
54 |
43 52 53
|
syl2anc |
|
55 |
48 54
|
eqtr4d |
|
56 |
10
|
ad2antrr |
|
57 |
1 46
|
grpcl |
|
58 |
56 43 44 57
|
syl3anc |
|
59 |
|
ovres |
|
60 |
58 49 59
|
syl2anc |
|
61 |
|
ovres |
|
62 |
44 49 61
|
syl2anc |
|
63 |
62
|
oveq2d |
|
64 |
55 60 63
|
3eqtr4d |
|
65 |
64
|
ralrimivva |
|
66 |
41 65
|
jca |
|
67 |
66
|
ralrimiva |
|
68 |
31 67
|
jca |
|
69 |
1 46 32
|
isga |
|
70 |
16 68 69
|
sylanbrc |
|
71 |
8 70
|
impbida |
|