Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
|
2 |
|
gasta.2 |
|
3 |
2
|
ssrab3 |
|
4 |
3
|
a1i |
|
5 |
|
gagrp |
|
6 |
5
|
adantr |
|
7 |
|
eqid |
|
8 |
1 7
|
grpidcl |
|
9 |
6 8
|
syl |
|
10 |
7
|
gagrpid |
|
11 |
|
oveq1 |
|
12 |
11
|
eqeq1d |
|
13 |
12 2
|
elrab2 |
|
14 |
9 10 13
|
sylanbrc |
|
15 |
14
|
ne0d |
|
16 |
|
simpll |
|
17 |
16 5
|
syl |
|
18 |
|
simpr |
|
19 |
|
oveq1 |
|
20 |
19
|
eqeq1d |
|
21 |
20 2
|
elrab2 |
|
22 |
18 21
|
sylib |
|
23 |
22
|
simpld |
|
24 |
23
|
adantrr |
|
25 |
|
simprr |
|
26 |
|
oveq1 |
|
27 |
26
|
eqeq1d |
|
28 |
27 2
|
elrab2 |
|
29 |
25 28
|
sylib |
|
30 |
29
|
simpld |
|
31 |
|
eqid |
|
32 |
1 31
|
grpcl |
|
33 |
17 24 30 32
|
syl3anc |
|
34 |
|
simplr |
|
35 |
1 31
|
gaass |
|
36 |
16 24 30 34 35
|
syl13anc |
|
37 |
29
|
simprd |
|
38 |
37
|
oveq2d |
|
39 |
22
|
simprd |
|
40 |
39
|
adantrr |
|
41 |
36 38 40
|
3eqtrd |
|
42 |
|
oveq1 |
|
43 |
42
|
eqeq1d |
|
44 |
43 2
|
elrab2 |
|
45 |
33 41 44
|
sylanbrc |
|
46 |
45
|
anassrs |
|
47 |
46
|
ralrimiva |
|
48 |
|
simpll |
|
49 |
48 5
|
syl |
|
50 |
|
eqid |
|
51 |
1 50
|
grpinvcl |
|
52 |
49 23 51
|
syl2anc |
|
53 |
|
simplr |
|
54 |
1 50
|
gacan |
|
55 |
48 23 53 53 54
|
syl13anc |
|
56 |
39 55
|
mpbid |
|
57 |
|
oveq1 |
|
58 |
57
|
eqeq1d |
|
59 |
58 2
|
elrab2 |
|
60 |
52 56 59
|
sylanbrc |
|
61 |
47 60
|
jca |
|
62 |
61
|
ralrimiva |
|
63 |
1 31 50
|
issubg2 |
|
64 |
6 63
|
syl |
|
65 |
4 15 62 64
|
mpbir3and |
|