Step |
Hyp |
Ref |
Expression |
1 |
|
gasubg.1 |
|
2 |
|
gaset |
|
3 |
1
|
subggrp |
|
4 |
2 3
|
anim12ci |
|
5 |
|
eqid |
|
6 |
5
|
gaf |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
5
|
subgss |
|
10 |
8 9
|
syl |
|
11 |
|
xpss1 |
|
12 |
10 11
|
syl |
|
13 |
7 12
|
fssresd |
|
14 |
1
|
subgbas |
|
15 |
8 14
|
syl |
|
16 |
15
|
xpeq1d |
|
17 |
16
|
feq2d |
|
18 |
13 17
|
mpbid |
|
19 |
8
|
adantr |
|
20 |
|
eqid |
|
21 |
20
|
subg0cl |
|
22 |
19 21
|
syl |
|
23 |
|
simpr |
|
24 |
|
ovres |
|
25 |
22 23 24
|
syl2anc |
|
26 |
1 20
|
subg0 |
|
27 |
19 26
|
syl |
|
28 |
27
|
oveq1d |
|
29 |
20
|
gagrpid |
|
30 |
29
|
adantlr |
|
31 |
25 28 30
|
3eqtr3d |
|
32 |
|
eqimss2 |
|
33 |
15 32
|
syl |
|
34 |
33
|
adantr |
|
35 |
34
|
sselda |
|
36 |
34
|
sselda |
|
37 |
35 36
|
anim12dan |
|
38 |
|
simprl |
|
39 |
7
|
ad2antrr |
|
40 |
9
|
ad3antlr |
|
41 |
|
simprr |
|
42 |
40 41
|
sseldd |
|
43 |
23
|
adantr |
|
44 |
39 42 43
|
fovrnd |
|
45 |
|
ovres |
|
46 |
38 44 45
|
syl2anc |
|
47 |
|
ovres |
|
48 |
41 43 47
|
syl2anc |
|
49 |
48
|
oveq2d |
|
50 |
|
simplll |
|
51 |
40 38
|
sseldd |
|
52 |
|
eqid |
|
53 |
5 52
|
gaass |
|
54 |
50 51 42 43 53
|
syl13anc |
|
55 |
46 49 54
|
3eqtr4d |
|
56 |
52
|
subgcl |
|
57 |
56
|
3expb |
|
58 |
19 57
|
sylan |
|
59 |
|
ovres |
|
60 |
58 43 59
|
syl2anc |
|
61 |
1 52
|
ressplusg |
|
62 |
61
|
ad3antlr |
|
63 |
62
|
oveqd |
|
64 |
63
|
oveq1d |
|
65 |
55 60 64
|
3eqtr2rd |
|
66 |
37 65
|
syldan |
|
67 |
66
|
ralrimivva |
|
68 |
31 67
|
jca |
|
69 |
68
|
ralrimiva |
|
70 |
18 69
|
jca |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
71 72 73
|
isga |
|
75 |
4 70 74
|
sylanbrc |
|