Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
|
gausslemma2d.n |
|
6 |
1 2 3 4 5
|
gausslemma2dlem7 |
|
7 |
|
eldifi |
|
8 |
|
prmnn |
|
9 |
8
|
nnred |
|
10 |
|
prmgt1 |
|
11 |
9 10
|
jca |
|
12 |
1 7 11
|
3syl |
|
13 |
|
1mod |
|
14 |
12 13
|
syl |
|
15 |
14
|
eqcomd |
|
16 |
15
|
eqeq2d |
|
17 |
|
neg1z |
|
18 |
1 4 2 5
|
gausslemma2dlem0h |
|
19 |
|
zexpcl |
|
20 |
17 18 19
|
sylancr |
|
21 |
|
2nn |
|
22 |
21
|
a1i |
|
23 |
1 2
|
gausslemma2dlem0b |
|
24 |
23
|
nnnn0d |
|
25 |
22 24
|
nnexpcld |
|
26 |
25
|
nnzd |
|
27 |
20 26
|
zmulcld |
|
28 |
27
|
zred |
|
29 |
|
1red |
|
30 |
28 29
|
jca |
|
31 |
30
|
adantr |
|
32 |
1
|
gausslemma2dlem0a |
|
33 |
32
|
nnrpd |
|
34 |
20 33
|
jca |
|
35 |
34
|
adantr |
|
36 |
|
simpr |
|
37 |
|
modmul1 |
|
38 |
31 35 36 37
|
syl3anc |
|
39 |
38
|
ex |
|
40 |
20
|
zcnd |
|
41 |
25
|
nncnd |
|
42 |
40 41 40
|
mul32d |
|
43 |
18
|
nn0cnd |
|
44 |
43
|
2timesd |
|
45 |
44
|
eqcomd |
|
46 |
45
|
oveq2d |
|
47 |
|
neg1cn |
|
48 |
47
|
a1i |
|
49 |
48 18 18
|
expaddd |
|
50 |
18
|
nn0zd |
|
51 |
|
m1expeven |
|
52 |
50 51
|
syl |
|
53 |
46 49 52
|
3eqtr3d |
|
54 |
53
|
oveq1d |
|
55 |
41
|
mulid2d |
|
56 |
42 54 55
|
3eqtrd |
|
57 |
56
|
oveq1d |
|
58 |
40
|
mulid2d |
|
59 |
58
|
oveq1d |
|
60 |
57 59
|
eqeq12d |
|
61 |
2
|
oveq2i |
|
62 |
61
|
oveq1i |
|
63 |
62
|
eqeq1i |
|
64 |
|
2z |
|
65 |
|
lgsvalmod |
|
66 |
64 1 65
|
sylancr |
|
67 |
66
|
eqcomd |
|
68 |
67
|
eqeq1d |
|
69 |
1 4 2 5
|
gausslemma2dlem0i |
|
70 |
68 69
|
sylbid |
|
71 |
63 70
|
syl5bi |
|
72 |
60 71
|
sylbid |
|
73 |
39 72
|
syld |
|
74 |
16 73
|
sylbid |
|
75 |
6 74
|
mpd |
|