Metamath Proof Explorer


Theorem gausslemma2dlem0a

Description: Auxiliary lemma 1 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypothesis gausslemma2dlem0a.p φ P 2
Assertion gausslemma2dlem0a φ P

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p φ P 2
2 nnoddn2prm P 2 P ¬ 2 P
3 simpl P ¬ 2 P P
4 1 2 3 3syl φ P