Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Gauss' Lemma
gausslemma2dlem0b
Next ⟩
gausslemma2dlem0c
Metamath Proof Explorer
Ascii
Unicode
Theorem
gausslemma2dlem0b
Description:
Auxiliary lemma 2 for
gausslemma2d
.
(Contributed by
AV
, 9-Jul-2021)
Ref
Expression
Hypotheses
gausslemma2dlem0a.p
⊢
φ
→
P
∈
ℙ
∖
2
gausslemma2dlem0b.h
⊢
H
=
P
−
1
2
Assertion
gausslemma2dlem0b
⊢
φ
→
H
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
gausslemma2dlem0a.p
⊢
φ
→
P
∈
ℙ
∖
2
2
gausslemma2dlem0b.h
⊢
H
=
P
−
1
2
3
eldifi
⊢
P
∈
ℙ
∖
2
→
P
∈
ℙ
4
prmuz2
⊢
P
∈
ℙ
→
P
∈
ℤ
≥
2
5
3
4
syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℤ
≥
2
6
nnoddn2prm
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
∧
¬
2
∥
P
7
nnoddm1d2
⊢
P
∈
ℕ
→
¬
2
∥
P
↔
P
+
1
2
∈
ℕ
8
7
biimpa
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
+
1
2
∈
ℕ
9
8
nnnn0d
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
+
1
2
∈
ℕ
0
10
6
9
syl
⊢
P
∈
ℙ
∖
2
→
P
+
1
2
∈
ℕ
0
11
5
10
jca
⊢
P
∈
ℙ
∖
2
→
P
∈
ℤ
≥
2
∧
P
+
1
2
∈
ℕ
0
12
1
11
syl
⊢
φ
→
P
∈
ℤ
≥
2
∧
P
+
1
2
∈
ℕ
0
13
nno
⊢
P
∈
ℤ
≥
2
∧
P
+
1
2
∈
ℕ
0
→
P
−
1
2
∈
ℕ
14
12
13
syl
⊢
φ
→
P
−
1
2
∈
ℕ
15
2
14
eqeltrid
⊢
φ
→
H
∈
ℕ