Metamath Proof Explorer


Theorem gausslemma2dlem0b

Description: Auxiliary lemma 2 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0a.p φ P 2
gausslemma2dlem0b.h H = P 1 2
Assertion gausslemma2dlem0b φ H

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p φ P 2
2 gausslemma2dlem0b.h H = P 1 2
3 eldifi P 2 P
4 prmuz2 P P 2
5 3 4 syl P 2 P 2
6 nnoddn2prm P 2 P ¬ 2 P
7 nnoddm1d2 P ¬ 2 P P + 1 2
8 7 biimpa P ¬ 2 P P + 1 2
9 8 nnnn0d P ¬ 2 P P + 1 2 0
10 6 9 syl P 2 P + 1 2 0
11 5 10 jca P 2 P 2 P + 1 2 0
12 1 11 syl φ P 2 P + 1 2 0
13 nno P 2 P + 1 2 0 P 1 2
14 12 13 syl φ P 1 2
15 2 14 eqeltrid φ H