Metamath Proof Explorer


Theorem gausslemma2dlem0d

Description: Auxiliary lemma 4 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
Assertion gausslemma2dlem0d φ M 0

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 1 gausslemma2dlem0a φ P
4 nnre P P
5 4re 4
6 5 a1i P 4
7 4ne0 4 0
8 7 a1i P 4 0
9 4 6 8 redivcld P P 4
10 nnnn0 P P 0
11 10 nn0ge0d P 0 P
12 4pos 0 < 4
13 5 12 pm3.2i 4 0 < 4
14 13 a1i P 4 0 < 4
15 divge0 P 0 P 4 0 < 4 0 P 4
16 4 11 14 15 syl21anc P 0 P 4
17 9 16 jca P P 4 0 P 4
18 flge0nn0 P 4 0 P 4 P 4 0
19 3 17 18 3syl φ P 4 0
20 2 19 eqeltrid φ M 0