Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Gauss' Lemma
gausslemma2dlem0e
Next ⟩
gausslemma2dlem0f
Metamath Proof Explorer
Ascii
Unicode
Theorem
gausslemma2dlem0e
Description:
Auxiliary lemma 5 for
gausslemma2d
.
(Contributed by
AV
, 9-Jul-2021)
Ref
Expression
Hypotheses
gausslemma2dlem0.p
⊢
φ
→
P
∈
ℙ
∖
2
gausslemma2dlem0.m
⊢
M
=
P
4
Assertion
gausslemma2dlem0e
⊢
φ
→
M
⋅
2
<
P
2
Proof
Step
Hyp
Ref
Expression
1
gausslemma2dlem0.p
⊢
φ
→
P
∈
ℙ
∖
2
2
gausslemma2dlem0.m
⊢
M
=
P
4
3
2
oveq1i
⊢
M
⋅
2
=
P
4
⋅
2
4
nnoddn2prm
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
∧
¬
2
∥
P
5
nnz
⊢
P
∈
ℕ
→
P
∈
ℤ
6
5
anim1i
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
∈
ℤ
∧
¬
2
∥
P
7
1
4
6
3syl
⊢
φ
→
P
∈
ℤ
∧
¬
2
∥
P
8
flodddiv4t2lthalf
⊢
P
∈
ℤ
∧
¬
2
∥
P
→
P
4
⋅
2
<
P
2
9
7
8
syl
⊢
φ
→
P
4
⋅
2
<
P
2
10
3
9
eqbrtrid
⊢
φ
→
M
⋅
2
<
P
2