Metamath Proof Explorer


Theorem gausslemma2dlem0e

Description: Auxiliary lemma 5 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
Assertion gausslemma2dlem0e φ M 2 < P 2

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 2 oveq1i M 2 = P 4 2
4 nnoddn2prm P 2 P ¬ 2 P
5 nnz P P
6 5 anim1i P ¬ 2 P P ¬ 2 P
7 1 4 6 3syl φ P ¬ 2 P
8 flodddiv4t2lthalf P ¬ 2 P P 4 2 < P 2
9 7 8 syl φ P 4 2 < P 2
10 3 9 eqbrtrid φ M 2 < P 2