Metamath Proof Explorer


Theorem gausslemma2dlem0f

Description: Auxiliary lemma 6 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
gausslemma2dlem0.h H = P 1 2
Assertion gausslemma2dlem0f φ M + 1 H

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 gausslemma2dlem0.h H = P 1 2
4 eldifsn P 2 P P 2
5 prm23ge5 P P = 2 P = 3 P 5
6 eqneqall P = 2 P 2 P = 3 P 5
7 orc P = 3 P = 3 P 5
8 7 a1d P = 3 P 2 P = 3 P 5
9 olc P 5 P = 3 P 5
10 9 a1d P 5 P 2 P = 3 P 5
11 6 8 10 3jaoi P = 2 P = 3 P 5 P 2 P = 3 P 5
12 5 11 syl P P 2 P = 3 P 5
13 12 imp P P 2 P = 3 P 5
14 4 13 sylbi P 2 P = 3 P 5
15 fldiv4p1lem1div2 P = 3 P 5 P 4 + 1 P 1 2
16 1 14 15 3syl φ P 4 + 1 P 1 2
17 2 oveq1i M + 1 = P 4 + 1
18 16 17 3 3brtr4g φ M + 1 H