Metamath Proof Explorer


Theorem gausslemma2dlem0g

Description: Auxiliary lemma 7 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
gausslemma2dlem0.h H = P 1 2
Assertion gausslemma2dlem0g φ M H

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 gausslemma2dlem0.h H = P 1 2
4 1 gausslemma2dlem0a φ P
5 fldiv4lem1div2 P P 4 P 1 2
6 4 5 syl φ P 4 P 1 2
7 6 2 3 3brtr4g φ M H