Metamath Proof Explorer


Theorem gausslemma2dlem0h

Description: Auxiliary lemma 8 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
gausslemma2dlem0.h H = P 1 2
gausslemma2dlem0.n N = H M
Assertion gausslemma2dlem0h φ N 0

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 gausslemma2dlem0.h H = P 1 2
4 gausslemma2dlem0.n N = H M
5 1 3 gausslemma2dlem0b φ H
6 5 nnzd φ H
7 1 2 gausslemma2dlem0d φ M 0
8 7 nn0zd φ M
9 6 8 zsubcld φ H M
10 1 2 3 gausslemma2dlem0g φ M H
11 5 nnred φ H
12 7 nn0red φ M
13 11 12 subge0d φ 0 H M M H
14 10 13 mpbird φ 0 H M
15 elnn0z H M 0 H M 0 H M
16 9 14 15 sylanbrc φ H M 0
17 4 16 eqeltrid φ N 0