Metamath Proof Explorer


Theorem gausslemma2dlem0h

Description: Auxiliary lemma 8 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φP2
gausslemma2dlem0.m M=P4
gausslemma2dlem0.h H=P12
gausslemma2dlem0.n N=HM
Assertion gausslemma2dlem0h φN0

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φP2
2 gausslemma2dlem0.m M=P4
3 gausslemma2dlem0.h H=P12
4 gausslemma2dlem0.n N=HM
5 1 3 gausslemma2dlem0b φH
6 5 nnzd φH
7 1 2 gausslemma2dlem0d φM0
8 7 nn0zd φM
9 6 8 zsubcld φHM
10 1 2 3 gausslemma2dlem0g φMH
11 5 nnred φH
12 7 nn0red φM
13 11 12 subge0d φ0HMMH
14 10 13 mpbird φ0HM
15 elnn0z HM0HM0HM
16 9 14 15 sylanbrc φHM0
17 4 16 eqeltrid φN0