Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0.p |
|
2 |
|
gausslemma2dlem0.m |
|
3 |
|
gausslemma2dlem0.h |
|
4 |
|
gausslemma2dlem0.n |
|
5 |
|
2z |
|
6 |
|
id |
|
7 |
6
|
gausslemma2dlem0a |
|
8 |
7
|
nnzd |
|
9 |
1 8
|
syl |
|
10 |
|
lgscl1 |
|
11 |
5 9 10
|
sylancr |
|
12 |
|
ovex |
|
13 |
12
|
eltp |
|
14 |
1 2 3 4
|
gausslemma2dlem0h |
|
15 |
14
|
nn0zd |
|
16 |
|
m1expcl2 |
|
17 |
15 16
|
syl |
|
18 |
|
ovex |
|
19 |
18
|
elpr |
|
20 |
|
eqcom |
|
21 |
20
|
biimpi |
|
22 |
21
|
2a1d |
|
23 |
|
eldifi |
|
24 |
|
prmnn |
|
25 |
24
|
nnred |
|
26 |
|
prmgt1 |
|
27 |
25 26
|
jca |
|
28 |
|
1mod |
|
29 |
1 23 27 28
|
4syl |
|
30 |
29
|
eqeq2d |
|
31 |
|
oddprmge3 |
|
32 |
|
m1modge3gt1 |
|
33 |
|
breq2 |
|
34 |
|
1re |
|
35 |
34
|
ltnri |
|
36 |
35
|
pm2.21i |
|
37 |
33 36
|
biimtrdi |
|
38 |
32 37
|
syl5com |
|
39 |
1 31 38
|
3syl |
|
40 |
30 39
|
sylbid |
|
41 |
|
oveq1 |
|
42 |
41
|
eqeq2d |
|
43 |
|
eqeq2 |
|
44 |
42 43
|
imbi12d |
|
45 |
40 44
|
imbitrrid |
|
46 |
22 45
|
jaoi |
|
47 |
19 46
|
sylbi |
|
48 |
17 47
|
mpcom |
|
49 |
|
oveq1 |
|
50 |
49
|
eqeq1d |
|
51 |
|
eqeq1 |
|
52 |
50 51
|
imbi12d |
|
53 |
48 52
|
imbitrrid |
|
54 |
1
|
gausslemma2dlem0a |
|
55 |
54
|
nnrpd |
|
56 |
|
0mod |
|
57 |
55 56
|
syl |
|
58 |
57
|
eqeq1d |
|
59 |
|
oveq1 |
|
60 |
59
|
eqeq2d |
|
61 |
60
|
adantr |
|
62 |
|
negmod0 |
|
63 |
|
eqcom |
|
64 |
62 63
|
bitrdi |
|
65 |
34 55 64
|
sylancr |
|
66 |
29
|
eqeq1d |
|
67 |
|
ax-1ne0 |
|
68 |
|
eqneqall |
|
69 |
67 68
|
mpi |
|
70 |
66 69
|
biimtrdi |
|
71 |
65 70
|
sylbird |
|
72 |
71
|
adantl |
|
73 |
61 72
|
sylbid |
|
74 |
73
|
ex |
|
75 |
41
|
eqeq2d |
|
76 |
75
|
adantr |
|
77 |
|
eqcom |
|
78 |
77 66
|
bitrid |
|
79 |
78 69
|
biimtrdi |
|
80 |
79
|
adantl |
|
81 |
76 80
|
sylbid |
|
82 |
81
|
ex |
|
83 |
74 82
|
jaoi |
|
84 |
19 83
|
sylbi |
|
85 |
17 84
|
mpcom |
|
86 |
58 85
|
sylbid |
|
87 |
|
oveq1 |
|
88 |
87
|
eqeq1d |
|
89 |
|
eqeq1 |
|
90 |
88 89
|
imbi12d |
|
91 |
86 90
|
imbitrrid |
|
92 |
29
|
eqeq1d |
|
93 |
|
eqcom |
|
94 |
|
eqcom |
|
95 |
39 93 94
|
3imtr4g |
|
96 |
59
|
eqeq2d |
|
97 |
|
eqeq2 |
|
98 |
96 97
|
imbi12d |
|
99 |
95 98
|
imbitrrid |
|
100 |
|
eqcom |
|
101 |
100
|
biimpi |
|
102 |
101
|
2a1d |
|
103 |
99 102
|
jaoi |
|
104 |
19 103
|
sylbi |
|
105 |
17 104
|
mpcom |
|
106 |
92 105
|
sylbid |
|
107 |
|
oveq1 |
|
108 |
107
|
eqeq1d |
|
109 |
|
eqeq1 |
|
110 |
108 109
|
imbi12d |
|
111 |
106 110
|
imbitrrid |
|
112 |
53 91 111
|
3jaoi |
|
113 |
13 112
|
sylbi |
|
114 |
11 113
|
mpcom |
|