Metamath Proof Explorer


Theorem gausslemma2dlem0i

Description: Auxiliary lemma 9 for gausslemma2d . (Contributed by AV, 14-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φ P 2
gausslemma2dlem0.m M = P 4
gausslemma2dlem0.h H = P 1 2
gausslemma2dlem0.n N = H M
Assertion gausslemma2dlem0i φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φ P 2
2 gausslemma2dlem0.m M = P 4
3 gausslemma2dlem0.h H = P 1 2
4 gausslemma2dlem0.n N = H M
5 2z 2
6 id P 2 P 2
7 6 gausslemma2dlem0a P 2 P
8 7 nnzd P 2 P
9 1 8 syl φ P
10 lgscl1 2 P 2 / L P 1 0 1
11 5 9 10 sylancr φ 2 / L P 1 0 1
12 ovex 2 / L P V
13 12 eltp 2 / L P 1 0 1 2 / L P = 1 2 / L P = 0 2 / L P = 1
14 1 2 3 4 gausslemma2dlem0h φ N 0
15 14 nn0zd φ N
16 m1expcl2 N 1 N 1 1
17 15 16 syl φ 1 N 1 1
18 ovex 1 N V
19 18 elpr 1 N 1 1 1 N = 1 1 N = 1
20 eqcom 1 N = 1 1 = 1 N
21 20 biimpi 1 N = 1 1 = 1 N
22 21 2a1d 1 N = 1 φ -1 mod P = 1 N mod P 1 = 1 N
23 eldifi P 2 P
24 prmnn P P
25 24 nnred P P
26 prmgt1 P 1 < P
27 25 26 jca P P 1 < P
28 1mod P 1 < P 1 mod P = 1
29 1 23 27 28 4syl φ 1 mod P = 1
30 29 eqeq2d φ -1 mod P = 1 mod P -1 mod P = 1
31 oddprmge3 P 2 P 3
32 m1modge3gt1 P 3 1 < -1 mod P
33 breq2 -1 mod P = 1 1 < -1 mod P 1 < 1
34 1re 1
35 34 ltnri ¬ 1 < 1
36 35 pm2.21i 1 < 1 1 = 1
37 33 36 biimtrdi -1 mod P = 1 1 < -1 mod P 1 = 1
38 32 37 syl5com P 3 -1 mod P = 1 1 = 1
39 1 31 38 3syl φ -1 mod P = 1 1 = 1
40 30 39 sylbid φ -1 mod P = 1 mod P 1 = 1
41 oveq1 1 N = 1 1 N mod P = 1 mod P
42 41 eqeq2d 1 N = 1 -1 mod P = 1 N mod P -1 mod P = 1 mod P
43 eqeq2 1 N = 1 1 = 1 N 1 = 1
44 42 43 imbi12d 1 N = 1 -1 mod P = 1 N mod P 1 = 1 N -1 mod P = 1 mod P 1 = 1
45 40 44 imbitrrid 1 N = 1 φ -1 mod P = 1 N mod P 1 = 1 N
46 22 45 jaoi 1 N = 1 1 N = 1 φ -1 mod P = 1 N mod P 1 = 1 N
47 19 46 sylbi 1 N 1 1 φ -1 mod P = 1 N mod P 1 = 1 N
48 17 47 mpcom φ -1 mod P = 1 N mod P 1 = 1 N
49 oveq1 2 / L P = 1 2 / L P mod P = -1 mod P
50 49 eqeq1d 2 / L P = 1 2 / L P mod P = 1 N mod P -1 mod P = 1 N mod P
51 eqeq1 2 / L P = 1 2 / L P = 1 N 1 = 1 N
52 50 51 imbi12d 2 / L P = 1 2 / L P mod P = 1 N mod P 2 / L P = 1 N -1 mod P = 1 N mod P 1 = 1 N
53 48 52 imbitrrid 2 / L P = 1 φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N
54 1 gausslemma2dlem0a φ P
55 54 nnrpd φ P +
56 0mod P + 0 mod P = 0
57 55 56 syl φ 0 mod P = 0
58 57 eqeq1d φ 0 mod P = 1 N mod P 0 = 1 N mod P
59 oveq1 1 N = 1 1 N mod P = -1 mod P
60 59 eqeq2d 1 N = 1 0 = 1 N mod P 0 = -1 mod P
61 60 adantr 1 N = 1 φ 0 = 1 N mod P 0 = -1 mod P
62 negmod0 1 P + 1 mod P = 0 -1 mod P = 0
63 eqcom -1 mod P = 0 0 = -1 mod P
64 62 63 bitrdi 1 P + 1 mod P = 0 0 = -1 mod P
65 34 55 64 sylancr φ 1 mod P = 0 0 = -1 mod P
66 29 eqeq1d φ 1 mod P = 0 1 = 0
67 ax-1ne0 1 0
68 eqneqall 1 = 0 1 0 0 = 1 N
69 67 68 mpi 1 = 0 0 = 1 N
70 66 69 biimtrdi φ 1 mod P = 0 0 = 1 N
71 65 70 sylbird φ 0 = -1 mod P 0 = 1 N
72 71 adantl 1 N = 1 φ 0 = -1 mod P 0 = 1 N
73 61 72 sylbid 1 N = 1 φ 0 = 1 N mod P 0 = 1 N
74 73 ex 1 N = 1 φ 0 = 1 N mod P 0 = 1 N
75 41 eqeq2d 1 N = 1 0 = 1 N mod P 0 = 1 mod P
76 75 adantr 1 N = 1 φ 0 = 1 N mod P 0 = 1 mod P
77 eqcom 0 = 1 mod P 1 mod P = 0
78 77 66 bitrid φ 0 = 1 mod P 1 = 0
79 78 69 biimtrdi φ 0 = 1 mod P 0 = 1 N
80 79 adantl 1 N = 1 φ 0 = 1 mod P 0 = 1 N
81 76 80 sylbid 1 N = 1 φ 0 = 1 N mod P 0 = 1 N
82 81 ex 1 N = 1 φ 0 = 1 N mod P 0 = 1 N
83 74 82 jaoi 1 N = 1 1 N = 1 φ 0 = 1 N mod P 0 = 1 N
84 19 83 sylbi 1 N 1 1 φ 0 = 1 N mod P 0 = 1 N
85 17 84 mpcom φ 0 = 1 N mod P 0 = 1 N
86 58 85 sylbid φ 0 mod P = 1 N mod P 0 = 1 N
87 oveq1 2 / L P = 0 2 / L P mod P = 0 mod P
88 87 eqeq1d 2 / L P = 0 2 / L P mod P = 1 N mod P 0 mod P = 1 N mod P
89 eqeq1 2 / L P = 0 2 / L P = 1 N 0 = 1 N
90 88 89 imbi12d 2 / L P = 0 2 / L P mod P = 1 N mod P 2 / L P = 1 N 0 mod P = 1 N mod P 0 = 1 N
91 86 90 imbitrrid 2 / L P = 0 φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N
92 29 eqeq1d φ 1 mod P = 1 N mod P 1 = 1 N mod P
93 eqcom 1 = -1 mod P -1 mod P = 1
94 eqcom 1 = 1 1 = 1
95 39 93 94 3imtr4g φ 1 = -1 mod P 1 = 1
96 59 eqeq2d 1 N = 1 1 = 1 N mod P 1 = -1 mod P
97 eqeq2 1 N = 1 1 = 1 N 1 = 1
98 96 97 imbi12d 1 N = 1 1 = 1 N mod P 1 = 1 N 1 = -1 mod P 1 = 1
99 95 98 imbitrrid 1 N = 1 φ 1 = 1 N mod P 1 = 1 N
100 eqcom 1 N = 1 1 = 1 N
101 100 biimpi 1 N = 1 1 = 1 N
102 101 2a1d 1 N = 1 φ 1 = 1 N mod P 1 = 1 N
103 99 102 jaoi 1 N = 1 1 N = 1 φ 1 = 1 N mod P 1 = 1 N
104 19 103 sylbi 1 N 1 1 φ 1 = 1 N mod P 1 = 1 N
105 17 104 mpcom φ 1 = 1 N mod P 1 = 1 N
106 92 105 sylbid φ 1 mod P = 1 N mod P 1 = 1 N
107 oveq1 2 / L P = 1 2 / L P mod P = 1 mod P
108 107 eqeq1d 2 / L P = 1 2 / L P mod P = 1 N mod P 1 mod P = 1 N mod P
109 eqeq1 2 / L P = 1 2 / L P = 1 N 1 = 1 N
110 108 109 imbi12d 2 / L P = 1 2 / L P mod P = 1 N mod P 2 / L P = 1 N 1 mod P = 1 N mod P 1 = 1 N
111 106 110 imbitrrid 2 / L P = 1 φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N
112 53 91 111 3jaoi 2 / L P = 1 2 / L P = 0 2 / L P = 1 φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N
113 13 112 sylbi 2 / L P 1 0 1 φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N
114 11 113 mpcom φ 2 / L P mod P = 1 N mod P 2 / L P = 1 N