Metamath Proof Explorer


Theorem gausslemma2dlem1

Description: Lemma 1 for gausslemma2d . (Contributed by AV, 5-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φ P 2
gausslemma2d.h H = P 1 2
gausslemma2d.r R = x 1 H if x 2 < P 2 x 2 P x 2
Assertion gausslemma2dlem1 φ H ! = k = 1 H R k

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φ P 2
2 gausslemma2d.h H = P 1 2
3 gausslemma2d.r R = x 1 H if x 2 < P 2 x 2 P x 2
4 1 2 gausslemma2dlem0b φ H
5 4 nnnn0d φ H 0
6 fprodfac H 0 H ! = l = 1 H l
7 5 6 syl φ H ! = l = 1 H l
8 id l = R k l = R k
9 fzfid φ 1 H Fin
10 fzfi 1 H Fin
11 ovex x 2 V
12 ovex P x 2 V
13 11 12 ifex if x 2 < P 2 x 2 P x 2 V
14 13 3 fnmpti R Fn 1 H
15 1 2 3 gausslemma2dlem1a φ ran R = 1 H
16 rneqdmfinf1o 1 H Fin R Fn 1 H ran R = 1 H R : 1 H 1-1 onto 1 H
17 10 14 15 16 mp3an12i φ R : 1 H 1-1 onto 1 H
18 eqidd φ k 1 H R k = R k
19 elfzelz l 1 H l
20 19 zcnd l 1 H l
21 20 adantl φ l 1 H l
22 8 9 17 18 21 fprodf1o φ l = 1 H l = k = 1 H R k
23 7 22 eqtrd φ H ! = k = 1 H R k