Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
|
oveq1 |
|
6 |
5
|
breq1d |
|
7 |
5
|
oveq2d |
|
8 |
6 5 7
|
ifbieq12d |
|
9 |
8
|
adantl |
|
10 |
1
|
gausslemma2dlem0a |
|
11 |
|
elfz2 |
|
12 |
4
|
oveq1i |
|
13 |
12
|
breq1i |
|
14 |
|
nnre |
|
15 |
|
4re |
|
16 |
15
|
a1i |
|
17 |
|
4ne0 |
|
18 |
17
|
a1i |
|
19 |
14 16 18
|
redivcld |
|
20 |
19
|
adantl |
|
21 |
|
fllelt |
|
22 |
20 21
|
syl |
|
23 |
19
|
flcld |
|
24 |
23
|
zred |
|
25 |
|
peano2re |
|
26 |
24 25
|
syl |
|
27 |
26
|
adantl |
|
28 |
|
zre |
|
29 |
28
|
adantr |
|
30 |
|
ltleletr |
|
31 |
20 27 29 30
|
syl3anc |
|
32 |
31
|
expd |
|
33 |
32
|
adantld |
|
34 |
22 33
|
mpd |
|
35 |
34
|
imp |
|
36 |
14
|
rehalfcld |
|
37 |
36
|
adantl |
|
38 |
|
2re |
|
39 |
38
|
a1i |
|
40 |
28 39
|
remulcld |
|
41 |
40
|
adantr |
|
42 |
|
2pos |
|
43 |
38 42
|
pm3.2i |
|
44 |
43
|
a1i |
|
45 |
|
lediv1 |
|
46 |
37 41 44 45
|
syl3anc |
|
47 |
|
nncn |
|
48 |
|
2cnne0 |
|
49 |
48
|
a1i |
|
50 |
|
divdiv1 |
|
51 |
47 49 49 50
|
syl3anc |
|
52 |
|
2t2e4 |
|
53 |
52
|
oveq2i |
|
54 |
51 53
|
eqtrdi |
|
55 |
|
zcn |
|
56 |
|
2cnd |
|
57 |
|
2ne0 |
|
58 |
57
|
a1i |
|
59 |
55 56 58
|
divcan4d |
|
60 |
54 59
|
breqan12rd |
|
61 |
46 60
|
bitrd |
|
62 |
61
|
adantr |
|
63 |
35 62
|
mpbird |
|
64 |
63
|
exp31 |
|
65 |
64
|
com23 |
|
66 |
13 65
|
syl5bi |
|
67 |
66
|
3ad2ant3 |
|
68 |
67
|
com12 |
|
69 |
68
|
adantr |
|
70 |
69
|
impcom |
|
71 |
11 70
|
sylbi |
|
72 |
71
|
impcom |
|
73 |
|
elfzelz |
|
74 |
73
|
zred |
|
75 |
38
|
a1i |
|
76 |
74 75
|
remulcld |
|
77 |
|
lenlt |
|
78 |
36 76 77
|
syl2an |
|
79 |
72 78
|
mpbid |
|
80 |
10 79
|
sylan |
|
81 |
80
|
adantr |
|
82 |
81
|
iffalsed |
|
83 |
9 82
|
eqtrd |
|
84 |
1 4
|
gausslemma2dlem0d |
|
85 |
|
nn0p1nn |
|
86 |
|
nnuz |
|
87 |
85 86
|
eleqtrdi |
|
88 |
84 87
|
syl |
|
89 |
|
fzss1 |
|
90 |
88 89
|
syl |
|
91 |
90
|
sselda |
|
92 |
|
ovexd |
|
93 |
3 83 91 92
|
fvmptd2 |
|
94 |
93
|
ralrimiva |
|