| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p |  | 
						
							| 2 |  | gausslemma2d.h |  | 
						
							| 3 |  | gausslemma2d.r |  | 
						
							| 4 |  | gausslemma2d.m |  | 
						
							| 5 |  | gausslemma2d.n |  | 
						
							| 6 | 1 2 3 4 | gausslemma2dlem5a |  | 
						
							| 7 |  | fzfi |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 |  | neg1cn |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | elfzelz |  | 
						
							| 12 |  | 2z |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 11 13 | zmulcld |  | 
						
							| 15 | 14 | zcnd |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 8 10 16 | fprodmul |  | 
						
							| 18 | 7 9 | pm3.2i |  | 
						
							| 19 |  | fprodconst |  | 
						
							| 20 | 18 19 | mp1i |  | 
						
							| 21 |  | nnoddn2prm |  | 
						
							| 22 |  | nnre |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 1 21 23 | 3syl |  | 
						
							| 25 |  | 4re |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | 4ne0 |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 24 26 28 | redivcld |  | 
						
							| 30 | 29 | flcld |  | 
						
							| 31 | 4 30 | eqeltrid |  | 
						
							| 32 | 31 | peano2zd |  | 
						
							| 33 |  | nnz |  | 
						
							| 34 |  | oddm1d2 |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 35 | biimpa |  | 
						
							| 37 | 1 21 36 | 3syl |  | 
						
							| 38 | 2 37 | eqeltrid |  | 
						
							| 39 | 1 4 2 | gausslemma2dlem0f |  | 
						
							| 40 |  | eluz2 |  | 
						
							| 41 | 32 38 39 40 | syl3anbrc |  | 
						
							| 42 |  | hashfz |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 | 38 | zcnd |  | 
						
							| 45 | 31 | zcnd |  | 
						
							| 46 |  | 1cnd |  | 
						
							| 47 | 44 45 46 | nppcan2d |  | 
						
							| 48 | 47 5 | eqtr4di |  | 
						
							| 49 | 43 48 | eqtrd |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 20 50 | eqtrd |  | 
						
							| 52 | 51 | oveq1d |  | 
						
							| 53 | 17 52 | eqtrd |  | 
						
							| 54 | 53 | oveq1d |  | 
						
							| 55 | 6 54 | eqtrd |  |