Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
|
gausslemma2d.n |
|
6 |
1 2 3 4
|
gausslemma2dlem5a |
|
7 |
|
fzfi |
|
8 |
7
|
a1i |
|
9 |
|
neg1cn |
|
10 |
9
|
a1i |
|
11 |
|
elfzelz |
|
12 |
|
2z |
|
13 |
12
|
a1i |
|
14 |
11 13
|
zmulcld |
|
15 |
14
|
zcnd |
|
16 |
15
|
adantl |
|
17 |
8 10 16
|
fprodmul |
|
18 |
7 9
|
pm3.2i |
|
19 |
|
fprodconst |
|
20 |
18 19
|
mp1i |
|
21 |
|
nnoddn2prm |
|
22 |
|
nnre |
|
23 |
22
|
adantr |
|
24 |
1 21 23
|
3syl |
|
25 |
|
4re |
|
26 |
25
|
a1i |
|
27 |
|
4ne0 |
|
28 |
27
|
a1i |
|
29 |
24 26 28
|
redivcld |
|
30 |
29
|
flcld |
|
31 |
4 30
|
eqeltrid |
|
32 |
31
|
peano2zd |
|
33 |
|
nnz |
|
34 |
|
oddm1d2 |
|
35 |
33 34
|
syl |
|
36 |
35
|
biimpa |
|
37 |
1 21 36
|
3syl |
|
38 |
2 37
|
eqeltrid |
|
39 |
1 4 2
|
gausslemma2dlem0f |
|
40 |
|
eluz2 |
|
41 |
32 38 39 40
|
syl3anbrc |
|
42 |
|
hashfz |
|
43 |
41 42
|
syl |
|
44 |
38
|
zcnd |
|
45 |
31
|
zcnd |
|
46 |
|
1cnd |
|
47 |
44 45 46
|
nppcan2d |
|
48 |
47 5
|
eqtr4di |
|
49 |
43 48
|
eqtrd |
|
50 |
49
|
oveq2d |
|
51 |
20 50
|
eqtrd |
|
52 |
51
|
oveq1d |
|
53 |
17 52
|
eqtrd |
|
54 |
53
|
oveq1d |
|
55 |
6 54
|
eqtrd |
|