| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p |  | 
						
							| 2 |  | gausslemma2d.h |  | 
						
							| 3 |  | gausslemma2d.r |  | 
						
							| 4 |  | gausslemma2d.m |  | 
						
							| 5 | 1 2 3 4 | gausslemma2dlem3 |  | 
						
							| 6 |  | prodeq2 |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 | 5 7 | syl |  | 
						
							| 9 |  | eldifi |  | 
						
							| 10 |  | fzfid |  | 
						
							| 11 |  | prmz |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | elfzelz |  | 
						
							| 14 |  | 2z |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 13 15 | zmulcld |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 12 17 | zsubcld |  | 
						
							| 19 |  | neg1z |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 20 16 | zmulcld |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | prmnn |  | 
						
							| 24 | 16 | zcnd |  | 
						
							| 25 | 24 | mulm1d |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 16 | zred |  | 
						
							| 29 | 23 | nnrpd |  | 
						
							| 30 |  | negmod |  | 
						
							| 31 | 28 29 30 | syl2anr |  | 
						
							| 32 | 27 31 | eqtr2d |  | 
						
							| 33 | 10 18 22 23 32 | fprodmodd |  | 
						
							| 34 | 1 9 33 | 3syl |  | 
						
							| 35 | 8 34 | eqtrd |  |