Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Gauss' Lemma
gausslemma2dlem6
Next ⟩
gausslemma2dlem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
gausslemma2dlem6
Description:
Lemma 6 for
gausslemma2d
.
(Contributed by
AV
, 16-Jun-2021)
Ref
Expression
Hypotheses
gausslemma2d.p
⊢
φ
→
P
∈
ℙ
∖
2
gausslemma2d.h
⊢
H
=
P
−
1
2
gausslemma2d.r
⊢
R
=
x
∈
1
…
H
⟼
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
gausslemma2d.m
⊢
M
=
P
4
gausslemma2d.n
⊢
N
=
H
−
M
Assertion
gausslemma2dlem6
⊢
φ
→
H
!
mod
P
=
−
1
N
2
H
H
!
mod
P
Proof
Step
Hyp
Ref
Expression
1
gausslemma2d.p
⊢
φ
→
P
∈
ℙ
∖
2
2
gausslemma2d.h
⊢
H
=
P
−
1
2
3
gausslemma2d.r
⊢
R
=
x
∈
1
…
H
⟼
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
4
gausslemma2d.m
⊢
M
=
P
4
5
gausslemma2d.n
⊢
N
=
H
−
M
6
1
2
3
4
gausslemma2dlem4
⊢
φ
→
H
!
=
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
7
6
oveq1d
⊢
φ
→
H
!
mod
P
=
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
8
fzfid
⊢
φ
→
1
…
M
∈
Fin
9
1
2
3
4
gausslemma2dlem2
⊢
φ
→
∀
k
∈
1
…
M
R
k
=
k
⋅
2
10
9
adantr
⊢
φ
∧
k
∈
1
…
M
→
∀
k
∈
1
…
M
R
k
=
k
⋅
2
11
rspa
⊢
∀
k
∈
1
…
M
R
k
=
k
⋅
2
∧
k
∈
1
…
M
→
R
k
=
k
⋅
2
12
11
expcom
⊢
k
∈
1
…
M
→
∀
k
∈
1
…
M
R
k
=
k
⋅
2
→
R
k
=
k
⋅
2
13
12
adantl
⊢
φ
∧
k
∈
1
…
M
→
∀
k
∈
1
…
M
R
k
=
k
⋅
2
→
R
k
=
k
⋅
2
14
elfzelz
⊢
k
∈
1
…
M
→
k
∈
ℤ
15
2z
⊢
2
∈
ℤ
16
15
a1i
⊢
k
∈
1
…
M
→
2
∈
ℤ
17
14
16
zmulcld
⊢
k
∈
1
…
M
→
k
⋅
2
∈
ℤ
18
17
adantl
⊢
φ
∧
k
∈
1
…
M
→
k
⋅
2
∈
ℤ
19
eleq1
⊢
R
k
=
k
⋅
2
→
R
k
∈
ℤ
↔
k
⋅
2
∈
ℤ
20
18
19
syl5ibrcom
⊢
φ
∧
k
∈
1
…
M
→
R
k
=
k
⋅
2
→
R
k
∈
ℤ
21
13
20
syld
⊢
φ
∧
k
∈
1
…
M
→
∀
k
∈
1
…
M
R
k
=
k
⋅
2
→
R
k
∈
ℤ
22
10
21
mpd
⊢
φ
∧
k
∈
1
…
M
→
R
k
∈
ℤ
23
8
22
fprodzcl
⊢
φ
→
∏
k
=
1
M
R
k
∈
ℤ
24
fzfid
⊢
φ
→
M
+
1
…
H
∈
Fin
25
1
2
3
4
gausslemma2dlem3
⊢
φ
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
26
25
adantr
⊢
φ
∧
k
∈
M
+
1
…
H
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
27
rspa
⊢
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
∧
k
∈
M
+
1
…
H
→
R
k
=
P
−
k
⋅
2
28
27
expcom
⊢
k
∈
M
+
1
…
H
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
→
R
k
=
P
−
k
⋅
2
29
28
adantl
⊢
φ
∧
k
∈
M
+
1
…
H
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
→
R
k
=
P
−
k
⋅
2
30
1
gausslemma2dlem0a
⊢
φ
→
P
∈
ℕ
31
30
nnzd
⊢
φ
→
P
∈
ℤ
32
elfzelz
⊢
k
∈
M
+
1
…
H
→
k
∈
ℤ
33
15
a1i
⊢
k
∈
M
+
1
…
H
→
2
∈
ℤ
34
32
33
zmulcld
⊢
k
∈
M
+
1
…
H
→
k
⋅
2
∈
ℤ
35
zsubcl
⊢
P
∈
ℤ
∧
k
⋅
2
∈
ℤ
→
P
−
k
⋅
2
∈
ℤ
36
31
34
35
syl2an
⊢
φ
∧
k
∈
M
+
1
…
H
→
P
−
k
⋅
2
∈
ℤ
37
eleq1
⊢
R
k
=
P
−
k
⋅
2
→
R
k
∈
ℤ
↔
P
−
k
⋅
2
∈
ℤ
38
36
37
syl5ibrcom
⊢
φ
∧
k
∈
M
+
1
…
H
→
R
k
=
P
−
k
⋅
2
→
R
k
∈
ℤ
39
29
38
syld
⊢
φ
∧
k
∈
M
+
1
…
H
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
→
R
k
∈
ℤ
40
26
39
mpd
⊢
φ
∧
k
∈
M
+
1
…
H
→
R
k
∈
ℤ
41
24
40
fprodzcl
⊢
φ
→
∏
k
=
M
+
1
H
R
k
∈
ℤ
42
41
zred
⊢
φ
→
∏
k
=
M
+
1
H
R
k
∈
ℝ
43
nnoddn2prm
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
∧
¬
2
∥
P
44
nnrp
⊢
P
∈
ℕ
→
P
∈
ℝ
+
45
44
adantr
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
∈
ℝ
+
46
1
43
45
3syl
⊢
φ
→
P
∈
ℝ
+
47
modmulmodr
⊢
∏
k
=
1
M
R
k
∈
ℤ
∧
∏
k
=
M
+
1
H
R
k
∈
ℝ
∧
P
∈
ℝ
+
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
mod
P
=
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
48
47
eqcomd
⊢
∏
k
=
1
M
R
k
∈
ℤ
∧
∏
k
=
M
+
1
H
R
k
∈
ℝ
∧
P
∈
ℝ
+
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
=
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
mod
P
49
23
42
46
48
syl3anc
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
=
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
mod
P
50
1
2
3
4
5
gausslemma2dlem5
⊢
φ
→
∏
k
=
M
+
1
H
R
k
mod
P
=
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
51
50
oveq2d
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
=
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
52
51
oveq1d
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
mod
P
=
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
mod
P
53
neg1rr
⊢
−
1
∈
ℝ
54
53
a1i
⊢
φ
→
−
1
∈
ℝ
55
1
4
2
5
gausslemma2dlem0h
⊢
φ
→
N
∈
ℕ
0
56
54
55
reexpcld
⊢
φ
→
−
1
N
∈
ℝ
57
32
adantl
⊢
φ
∧
k
∈
M
+
1
…
H
→
k
∈
ℤ
58
15
a1i
⊢
φ
∧
k
∈
M
+
1
…
H
→
2
∈
ℤ
59
57
58
zmulcld
⊢
φ
∧
k
∈
M
+
1
…
H
→
k
⋅
2
∈
ℤ
60
24
59
fprodzcl
⊢
φ
→
∏
k
=
M
+
1
H
k
⋅
2
∈
ℤ
61
60
zred
⊢
φ
→
∏
k
=
M
+
1
H
k
⋅
2
∈
ℝ
62
56
61
remulcld
⊢
φ
→
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
∈
ℝ
63
modmulmodr
⊢
∏
k
=
1
M
R
k
∈
ℤ
∧
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
∈
ℝ
∧
P
∈
ℝ
+
→
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
mod
P
=
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
64
23
62
46
63
syl3anc
⊢
φ
→
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
mod
P
=
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
65
9
prodeq2d
⊢
φ
→
∏
k
=
1
M
R
k
=
∏
k
=
1
M
k
⋅
2
66
65
oveq1d
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
k
⋅
2
=
∏
k
=
1
M
k
⋅
2
∏
k
=
M
+
1
H
k
⋅
2
67
fzfid
⊢
φ
→
1
…
H
∈
Fin
68
elfzelz
⊢
k
∈
1
…
H
→
k
∈
ℤ
69
68
zcnd
⊢
k
∈
1
…
H
→
k
∈
ℂ
70
69
adantl
⊢
φ
∧
k
∈
1
…
H
→
k
∈
ℂ
71
2cn
⊢
2
∈
ℂ
72
71
a1i
⊢
φ
∧
k
∈
1
…
H
→
2
∈
ℂ
73
67
70
72
fprodmul
⊢
φ
→
∏
k
=
1
H
k
⋅
2
=
∏
k
=
1
H
k
∏
k
=
1
H
2
74
1
4
gausslemma2dlem0d
⊢
φ
→
M
∈
ℕ
0
75
74
nn0red
⊢
φ
→
M
∈
ℝ
76
75
ltp1d
⊢
φ
→
M
<
M
+
1
77
fzdisj
⊢
M
<
M
+
1
→
1
…
M
∩
M
+
1
…
H
=
∅
78
76
77
syl
⊢
φ
→
1
…
M
∩
M
+
1
…
H
=
∅
79
1zzd
⊢
φ
→
1
∈
ℤ
80
nn0pzuz
⊢
M
∈
ℕ
0
∧
1
∈
ℤ
→
M
+
1
∈
ℤ
≥
1
81
74
79
80
syl2anc
⊢
φ
→
M
+
1
∈
ℤ
≥
1
82
74
nn0zd
⊢
φ
→
M
∈
ℤ
83
1
2
gausslemma2dlem0b
⊢
φ
→
H
∈
ℕ
84
83
nnzd
⊢
φ
→
H
∈
ℤ
85
1
4
2
gausslemma2dlem0g
⊢
φ
→
M
≤
H
86
eluz2
⊢
H
∈
ℤ
≥
M
↔
M
∈
ℤ
∧
H
∈
ℤ
∧
M
≤
H
87
82
84
85
86
syl3anbrc
⊢
φ
→
H
∈
ℤ
≥
M
88
fzsplit2
⊢
M
+
1
∈
ℤ
≥
1
∧
H
∈
ℤ
≥
M
→
1
…
H
=
1
…
M
∪
M
+
1
…
H
89
81
87
88
syl2anc
⊢
φ
→
1
…
H
=
1
…
M
∪
M
+
1
…
H
90
15
a1i
⊢
k
∈
1
…
H
→
2
∈
ℤ
91
68
90
zmulcld
⊢
k
∈
1
…
H
→
k
⋅
2
∈
ℤ
92
91
adantl
⊢
φ
∧
k
∈
1
…
H
→
k
⋅
2
∈
ℤ
93
92
zcnd
⊢
φ
∧
k
∈
1
…
H
→
k
⋅
2
∈
ℂ
94
78
89
67
93
fprodsplit
⊢
φ
→
∏
k
=
1
H
k
⋅
2
=
∏
k
=
1
M
k
⋅
2
∏
k
=
M
+
1
H
k
⋅
2
95
nnnn0
⊢
P
∈
ℕ
→
P
∈
ℕ
0
96
95
anim1i
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
∈
ℕ
0
∧
¬
2
∥
P
97
43
96
syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
0
∧
¬
2
∥
P
98
nn0oddm1d2
⊢
P
∈
ℕ
0
→
¬
2
∥
P
↔
P
−
1
2
∈
ℕ
0
99
98
biimpa
⊢
P
∈
ℕ
0
∧
¬
2
∥
P
→
P
−
1
2
∈
ℕ
0
100
2
99
eqeltrid
⊢
P
∈
ℕ
0
∧
¬
2
∥
P
→
H
∈
ℕ
0
101
1
97
100
3syl
⊢
φ
→
H
∈
ℕ
0
102
fprodfac
⊢
H
∈
ℕ
0
→
H
!
=
∏
k
=
1
H
k
103
101
102
syl
⊢
φ
→
H
!
=
∏
k
=
1
H
k
104
103
eqcomd
⊢
φ
→
∏
k
=
1
H
k
=
H
!
105
fzfi
⊢
1
…
H
∈
Fin
106
105
71
pm3.2i
⊢
1
…
H
∈
Fin
∧
2
∈
ℂ
107
fprodconst
⊢
1
…
H
∈
Fin
∧
2
∈
ℂ
→
∏
k
=
1
H
2
=
2
1
…
H
108
106
107
mp1i
⊢
φ
→
∏
k
=
1
H
2
=
2
1
…
H
109
104
108
oveq12d
⊢
φ
→
∏
k
=
1
H
k
∏
k
=
1
H
2
=
H
!
2
1
…
H
110
hashfz1
⊢
H
∈
ℕ
0
→
1
…
H
=
H
111
101
110
syl
⊢
φ
→
1
…
H
=
H
112
111
oveq2d
⊢
φ
→
2
1
…
H
=
2
H
113
112
oveq2d
⊢
φ
→
H
!
2
1
…
H
=
H
!
2
H
114
101
faccld
⊢
φ
→
H
!
∈
ℕ
115
114
nncnd
⊢
φ
→
H
!
∈
ℂ
116
2nn0
⊢
2
∈
ℕ
0
117
nn0expcl
⊢
2
∈
ℕ
0
∧
H
∈
ℕ
0
→
2
H
∈
ℕ
0
118
117
nn0cnd
⊢
2
∈
ℕ
0
∧
H
∈
ℕ
0
→
2
H
∈
ℂ
119
116
101
118
sylancr
⊢
φ
→
2
H
∈
ℂ
120
115
119
mulcomd
⊢
φ
→
H
!
2
H
=
2
H
H
!
121
109
113
120
3eqtrd
⊢
φ
→
∏
k
=
1
H
k
∏
k
=
1
H
2
=
2
H
H
!
122
73
94
121
3eqtr3d
⊢
φ
→
∏
k
=
1
M
k
⋅
2
∏
k
=
M
+
1
H
k
⋅
2
=
2
H
H
!
123
66
122
eqtrd
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
k
⋅
2
=
2
H
H
!
124
123
oveq2d
⊢
φ
→
−
1
N
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
k
⋅
2
=
−
1
N
2
H
H
!
125
23
zcnd
⊢
φ
→
∏
k
=
1
M
R
k
∈
ℂ
126
56
recnd
⊢
φ
→
−
1
N
∈
ℂ
127
60
zcnd
⊢
φ
→
∏
k
=
M
+
1
H
k
⋅
2
∈
ℂ
128
125
126
127
mul12d
⊢
φ
→
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
=
−
1
N
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
k
⋅
2
129
126
119
115
mulassd
⊢
φ
→
−
1
N
2
H
H
!
=
−
1
N
2
H
H
!
130
124
128
129
3eqtr4d
⊢
φ
→
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
=
−
1
N
2
H
H
!
131
130
oveq1d
⊢
φ
→
∏
k
=
1
M
R
k
−
1
N
∏
k
=
M
+
1
H
k
⋅
2
mod
P
=
−
1
N
2
H
H
!
mod
P
132
52
64
131
3eqtrd
⊢
φ
→
∏
k
=
1
M
R
k
∏
k
=
M
+
1
H
R
k
mod
P
mod
P
=
−
1
N
2
H
H
!
mod
P
133
7
49
132
3eqtrd
⊢
φ
→
H
!
mod
P
=
−
1
N
2
H
H
!
mod
P