Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
|
gausslemma2d.n |
|
6 |
1 2 3 4
|
gausslemma2dlem4 |
|
7 |
6
|
oveq1d |
|
8 |
|
fzfid |
|
9 |
1 2 3 4
|
gausslemma2dlem2 |
|
10 |
9
|
adantr |
|
11 |
|
rspa |
|
12 |
11
|
expcom |
|
13 |
12
|
adantl |
|
14 |
|
elfzelz |
|
15 |
|
2z |
|
16 |
15
|
a1i |
|
17 |
14 16
|
zmulcld |
|
18 |
17
|
adantl |
|
19 |
|
eleq1 |
|
20 |
18 19
|
syl5ibrcom |
|
21 |
13 20
|
syld |
|
22 |
10 21
|
mpd |
|
23 |
8 22
|
fprodzcl |
|
24 |
|
fzfid |
|
25 |
1 2 3 4
|
gausslemma2dlem3 |
|
26 |
25
|
adantr |
|
27 |
|
rspa |
|
28 |
27
|
expcom |
|
29 |
28
|
adantl |
|
30 |
1
|
gausslemma2dlem0a |
|
31 |
30
|
nnzd |
|
32 |
|
elfzelz |
|
33 |
15
|
a1i |
|
34 |
32 33
|
zmulcld |
|
35 |
|
zsubcl |
|
36 |
31 34 35
|
syl2an |
|
37 |
|
eleq1 |
|
38 |
36 37
|
syl5ibrcom |
|
39 |
29 38
|
syld |
|
40 |
26 39
|
mpd |
|
41 |
24 40
|
fprodzcl |
|
42 |
41
|
zred |
|
43 |
|
nnoddn2prm |
|
44 |
|
nnrp |
|
45 |
44
|
adantr |
|
46 |
1 43 45
|
3syl |
|
47 |
|
modmulmodr |
|
48 |
47
|
eqcomd |
|
49 |
23 42 46 48
|
syl3anc |
|
50 |
1 2 3 4 5
|
gausslemma2dlem5 |
|
51 |
50
|
oveq2d |
|
52 |
51
|
oveq1d |
|
53 |
|
neg1rr |
|
54 |
53
|
a1i |
|
55 |
1 4 2 5
|
gausslemma2dlem0h |
|
56 |
54 55
|
reexpcld |
|
57 |
32
|
adantl |
|
58 |
15
|
a1i |
|
59 |
57 58
|
zmulcld |
|
60 |
24 59
|
fprodzcl |
|
61 |
60
|
zred |
|
62 |
56 61
|
remulcld |
|
63 |
|
modmulmodr |
|
64 |
23 62 46 63
|
syl3anc |
|
65 |
9
|
prodeq2d |
|
66 |
65
|
oveq1d |
|
67 |
|
fzfid |
|
68 |
|
elfzelz |
|
69 |
68
|
zcnd |
|
70 |
69
|
adantl |
|
71 |
|
2cn |
|
72 |
71
|
a1i |
|
73 |
67 70 72
|
fprodmul |
|
74 |
1 4
|
gausslemma2dlem0d |
|
75 |
74
|
nn0red |
|
76 |
75
|
ltp1d |
|
77 |
|
fzdisj |
|
78 |
76 77
|
syl |
|
79 |
|
1zzd |
|
80 |
|
nn0pzuz |
|
81 |
74 79 80
|
syl2anc |
|
82 |
74
|
nn0zd |
|
83 |
1 2
|
gausslemma2dlem0b |
|
84 |
83
|
nnzd |
|
85 |
1 4 2
|
gausslemma2dlem0g |
|
86 |
|
eluz2 |
|
87 |
82 84 85 86
|
syl3anbrc |
|
88 |
|
fzsplit2 |
|
89 |
81 87 88
|
syl2anc |
|
90 |
15
|
a1i |
|
91 |
68 90
|
zmulcld |
|
92 |
91
|
adantl |
|
93 |
92
|
zcnd |
|
94 |
78 89 67 93
|
fprodsplit |
|
95 |
|
nnnn0 |
|
96 |
95
|
anim1i |
|
97 |
43 96
|
syl |
|
98 |
|
nn0oddm1d2 |
|
99 |
98
|
biimpa |
|
100 |
2 99
|
eqeltrid |
|
101 |
1 97 100
|
3syl |
|
102 |
|
fprodfac |
|
103 |
101 102
|
syl |
|
104 |
103
|
eqcomd |
|
105 |
|
fzfi |
|
106 |
105 71
|
pm3.2i |
|
107 |
|
fprodconst |
|
108 |
106 107
|
mp1i |
|
109 |
104 108
|
oveq12d |
|
110 |
|
hashfz1 |
|
111 |
101 110
|
syl |
|
112 |
111
|
oveq2d |
|
113 |
112
|
oveq2d |
|
114 |
101
|
faccld |
|
115 |
114
|
nncnd |
|
116 |
|
2nn0 |
|
117 |
|
nn0expcl |
|
118 |
117
|
nn0cnd |
|
119 |
116 101 118
|
sylancr |
|
120 |
115 119
|
mulcomd |
|
121 |
109 113 120
|
3eqtrd |
|
122 |
73 94 121
|
3eqtr3d |
|
123 |
66 122
|
eqtrd |
|
124 |
123
|
oveq2d |
|
125 |
23
|
zcnd |
|
126 |
56
|
recnd |
|
127 |
60
|
zcnd |
|
128 |
125 126 127
|
mul12d |
|
129 |
126 119 115
|
mulassd |
|
130 |
124 128 129
|
3eqtr4d |
|
131 |
130
|
oveq1d |
|
132 |
52 64 131
|
3eqtrd |
|
133 |
7 49 132
|
3eqtrd |
|