Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
|
gausslemma2d.n |
|
6 |
1 2 3 4 5
|
gausslemma2dlem6 |
|
7 |
1 2
|
gausslemma2dlem0b |
|
8 |
7
|
nnnn0d |
|
9 |
8
|
faccld |
|
10 |
9
|
nncnd |
|
11 |
10
|
mulid2d |
|
12 |
11
|
eqcomd |
|
13 |
12
|
oveq1d |
|
14 |
13
|
eqeq1d |
|
15 |
|
1zzd |
|
16 |
|
neg1z |
|
17 |
1 4 2 5
|
gausslemma2dlem0h |
|
18 |
|
zexpcl |
|
19 |
16 17 18
|
sylancr |
|
20 |
|
2z |
|
21 |
|
zexpcl |
|
22 |
20 8 21
|
sylancr |
|
23 |
19 22
|
zmulcld |
|
24 |
9
|
nnzd |
|
25 |
|
eldifi |
|
26 |
|
prmnn |
|
27 |
1 25 26
|
3syl |
|
28 |
1 2
|
gausslemma2dlem0c |
|
29 |
|
cncongrcoprm |
|
30 |
15 23 24 27 28 29
|
syl32anc |
|
31 |
14 30
|
bitrd |
|
32 |
|
simpr |
|
33 |
26
|
nnred |
|
34 |
|
prmgt1 |
|
35 |
33 34
|
jca |
|
36 |
25 35
|
syl |
|
37 |
|
1mod |
|
38 |
1 36 37
|
3syl |
|
39 |
38
|
adantr |
|
40 |
32 39
|
eqtr3d |
|
41 |
40
|
ex |
|
42 |
31 41
|
sylbid |
|
43 |
6 42
|
mpd |
|