Metamath Proof Explorer


Theorem gbege6

Description: Any even Goldbach number is greater than or equal to 6. Because of 6gbe , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbege6 Z GoldbachEven 6 Z

Proof

Step Hyp Ref Expression
1 gbepos Z GoldbachEven Z
2 gbegt5 Z GoldbachEven 5 < Z
3 5nn 5
4 3 nnzi 5
5 nnz Z Z
6 zltp1le 5 Z 5 < Z 5 + 1 Z
7 4 5 6 sylancr Z 5 < Z 5 + 1 Z
8 7 biimpd Z 5 < Z 5 + 1 Z
9 5p1e6 5 + 1 = 6
10 9 breq1i 5 + 1 Z 6 Z
11 8 10 syl6ib Z 5 < Z 6 Z
12 1 2 11 sylc Z GoldbachEven 6 Z