Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Goldbach's conjectures
gbepos
Next ⟩
gbowpos
Metamath Proof Explorer
Ascii
Unicode
Theorem
gbepos
Description:
Any even Goldbach number is positive.
(Contributed by
AV
, 20-Jul-2020)
Ref
Expression
Assertion
gbepos
⊢
Z
∈
GoldbachEven
→
Z
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
isgbe
⊢
Z
∈
GoldbachEven
↔
Z
∈
Even
∧
∃
p
∈
ℙ
∃
q
∈
ℙ
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
2
prmnn
⊢
p
∈
ℙ
→
p
∈
ℕ
3
prmnn
⊢
q
∈
ℙ
→
q
∈
ℕ
4
nnaddcl
⊢
p
∈
ℕ
∧
q
∈
ℕ
→
p
+
q
∈
ℕ
5
2
3
4
syl2an
⊢
p
∈
ℙ
∧
q
∈
ℙ
→
p
+
q
∈
ℕ
6
eleq1
⊢
Z
=
p
+
q
→
Z
∈
ℕ
↔
p
+
q
∈
ℕ
7
5
6
syl5ibr
⊢
Z
=
p
+
q
→
p
∈
ℙ
∧
q
∈
ℙ
→
Z
∈
ℕ
8
7
3ad2ant3
⊢
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
→
p
∈
ℙ
∧
q
∈
ℙ
→
Z
∈
ℕ
9
8
com12
⊢
p
∈
ℙ
∧
q
∈
ℙ
→
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
→
Z
∈
ℕ
10
9
a1i
⊢
Z
∈
Even
→
p
∈
ℙ
∧
q
∈
ℙ
→
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
→
Z
∈
ℕ
11
10
rexlimdvv
⊢
Z
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
→
Z
∈
ℕ
12
11
imp
⊢
Z
∈
Even
∧
∃
p
∈
ℙ
∃
q
∈
ℙ
p
∈
Odd
∧
q
∈
Odd
∧
Z
=
p
+
q
→
Z
∈
ℕ
13
1
12
sylbi
⊢
Z
∈
GoldbachEven
→
Z
∈
ℕ