Metamath Proof Explorer


Theorem gbepos

Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbepos Z GoldbachEven Z

Proof

Step Hyp Ref Expression
1 isgbe Z GoldbachEven Z Even p q p Odd q Odd Z = p + q
2 prmnn p p
3 prmnn q q
4 nnaddcl p q p + q
5 2 3 4 syl2an p q p + q
6 eleq1 Z = p + q Z p + q
7 5 6 syl5ibr Z = p + q p q Z
8 7 3ad2ant3 p Odd q Odd Z = p + q p q Z
9 8 com12 p q p Odd q Odd Z = p + q Z
10 9 a1i Z Even p q p Odd q Odd Z = p + q Z
11 10 rexlimdvv Z Even p q p Odd q Odd Z = p + q Z
12 11 imp Z Even p q p Odd q Odd Z = p + q Z
13 1 12 sylbi Z GoldbachEven Z