Metamath Proof Explorer


Theorem gbogbow

Description: A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion gbogbow Z GoldbachOdd Z GoldbachOddW

Proof

Step Hyp Ref Expression
1 simpr p Odd q Odd r Odd Z = p + q + r Z = p + q + r
2 1 reximi r p Odd q Odd r Odd Z = p + q + r r Z = p + q + r
3 2 reximi q r p Odd q Odd r Odd Z = p + q + r q r Z = p + q + r
4 3 reximi p q r p Odd q Odd r Odd Z = p + q + r p q r Z = p + q + r
5 4 anim2i Z Odd p q r p Odd q Odd r Odd Z = p + q + r Z Odd p q r Z = p + q + r
6 isgbo Z GoldbachOdd Z Odd p q r p Odd q Odd r Odd Z = p + q + r
7 isgbow Z GoldbachOddW Z Odd p q r Z = p + q + r
8 5 6 7 3imtr4i Z GoldbachOdd Z GoldbachOddW