Metamath Proof Explorer


Theorem gbowge7

Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowge7 Z GoldbachOddW 7 Z

Proof

Step Hyp Ref Expression
1 gbowgt5 Z GoldbachOddW 5 < Z
2 gbowpos Z GoldbachOddW Z
3 5nn 5
4 3 nnzi 5
5 nnz Z Z
6 zltp1le 5 Z 5 < Z 5 + 1 Z
7 4 5 6 sylancr Z 5 < Z 5 + 1 Z
8 7 biimpd Z 5 < Z 5 + 1 Z
9 2 8 syl Z GoldbachOddW 5 < Z 5 + 1 Z
10 5p1e6 5 + 1 = 6
11 10 breq1i 5 + 1 Z 6 Z
12 6re 6
13 2 nnred Z GoldbachOddW Z
14 leloe 6 Z 6 Z 6 < Z 6 = Z
15 12 13 14 sylancr Z GoldbachOddW 6 Z 6 < Z 6 = Z
16 11 15 syl5bb Z GoldbachOddW 5 + 1 Z 6 < Z 6 = Z
17 6nn 6
18 17 nnzi 6
19 2 nnzd Z GoldbachOddW Z
20 zltp1le 6 Z 6 < Z 6 + 1 Z
21 20 biimpd 6 Z 6 < Z 6 + 1 Z
22 18 19 21 sylancr Z GoldbachOddW 6 < Z 6 + 1 Z
23 6p1e7 6 + 1 = 7
24 23 breq1i 6 + 1 Z 7 Z
25 22 24 syl6ib Z GoldbachOddW 6 < Z 7 Z
26 isgbow Z GoldbachOddW Z Odd p q r Z = p + q + r
27 eleq1 6 = Z 6 Odd Z Odd
28 6even 6 Even
29 evennodd 6 Even ¬ 6 Odd
30 pm2.21 ¬ 6 Odd 6 Odd 7 Z
31 28 29 30 mp2b 6 Odd 7 Z
32 27 31 syl6bir 6 = Z Z Odd 7 Z
33 32 com12 Z Odd 6 = Z 7 Z
34 33 adantr Z Odd p q r Z = p + q + r 6 = Z 7 Z
35 26 34 sylbi Z GoldbachOddW 6 = Z 7 Z
36 25 35 jaod Z GoldbachOddW 6 < Z 6 = Z 7 Z
37 16 36 sylbid Z GoldbachOddW 5 + 1 Z 7 Z
38 9 37 syld Z GoldbachOddW 5 < Z 7 Z
39 1 38 mpd Z GoldbachOddW 7 Z