Step |
Hyp |
Ref |
Expression |
1 |
|
isgbow |
|
2 |
|
prmuz2 |
|
3 |
|
eluz2 |
|
4 |
2 3
|
sylib |
|
5 |
|
prmuz2 |
|
6 |
|
eluz2 |
|
7 |
5 6
|
sylib |
|
8 |
4 7
|
anim12i |
|
9 |
|
prmuz2 |
|
10 |
|
eluz2 |
|
11 |
9 10
|
sylib |
|
12 |
|
zre |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
zre |
|
15 |
14
|
3ad2ant2 |
|
16 |
13 15
|
anim12i |
|
17 |
|
2re |
|
18 |
17 17
|
pm3.2i |
|
19 |
16 18
|
jctil |
|
20 |
|
simp3 |
|
21 |
|
simp3 |
|
22 |
20 21
|
anim12i |
|
23 |
|
le2add |
|
24 |
19 22 23
|
sylc |
|
25 |
|
2p2e4 |
|
26 |
25
|
breq1i |
|
27 |
|
zaddcl |
|
28 |
27
|
zred |
|
29 |
28
|
adantr |
|
30 |
|
zre |
|
31 |
30
|
3ad2ant2 |
|
32 |
29 31
|
anim12i |
|
33 |
|
4re |
|
34 |
33 17
|
pm3.2i |
|
35 |
32 34
|
jctil |
|
36 |
|
simpr |
|
37 |
|
simp3 |
|
38 |
36 37
|
anim12i |
|
39 |
|
le2add |
|
40 |
35 38 39
|
sylc |
|
41 |
|
4p2e6 |
|
42 |
41
|
breq1i |
|
43 |
|
5lt6 |
|
44 |
|
5re |
|
45 |
44
|
a1i |
|
46 |
|
6re |
|
47 |
46
|
a1i |
|
48 |
27
|
adantr |
|
49 |
|
simpr |
|
50 |
48 49
|
zaddcld |
|
51 |
50
|
zred |
|
52 |
|
ltletr |
|
53 |
45 47 51 52
|
syl3anc |
|
54 |
43 53
|
mpani |
|
55 |
42 54
|
syl5bi |
|
56 |
55
|
expcom |
|
57 |
56
|
3ad2ant2 |
|
58 |
57
|
com12 |
|
59 |
58
|
adantr |
|
60 |
59
|
imp |
|
61 |
40 60
|
mpd |
|
62 |
61
|
exp31 |
|
63 |
26 62
|
syl5bi |
|
64 |
63
|
expcom |
|
65 |
64
|
3ad2ant2 |
|
66 |
65
|
com12 |
|
67 |
66
|
3ad2ant2 |
|
68 |
67
|
imp |
|
69 |
24 68
|
mpd |
|
70 |
69
|
imp |
|
71 |
|
breq2 |
|
72 |
70 71
|
syl5ibrcom |
|
73 |
8 11 72
|
syl2an |
|
74 |
73
|
rexlimdva |
|
75 |
74
|
adantl |
|
76 |
75
|
rexlimdvva |
|
77 |
76
|
imp |
|
78 |
1 77
|
sylbi |
|