Metamath Proof Explorer


Theorem gbowodd

Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion gbowodd Z GoldbachOddW Z Odd

Proof

Step Hyp Ref Expression
1 isgbow Z GoldbachOddW Z Odd p q r Z = p + q + r
2 1 simplbi Z GoldbachOddW Z Odd