Metamath Proof Explorer


Theorem gbowpos

Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowpos Z GoldbachOddW Z

Proof

Step Hyp Ref Expression
1 isgbow Z GoldbachOddW Z Odd p q r Z = p + q + r
2 prmnn p p
3 prmnn q q
4 2 3 anim12i p q p q
5 4 adantr p q r p q
6 nnaddcl p q p + q
7 5 6 syl p q r p + q
8 prmnn r r
9 8 adantl p q r r
10 7 9 nnaddcld p q r p + q + r
11 eleq1 Z = p + q + r Z p + q + r
12 10 11 syl5ibrcom p q r Z = p + q + r Z
13 12 rexlimdva p q r Z = p + q + r Z
14 13 a1i Z Odd p q r Z = p + q + r Z
15 14 rexlimdvv Z Odd p q r Z = p + q + r Z
16 15 imp Z Odd p q r Z = p + q + r Z
17 1 16 sylbi Z GoldbachOddW Z