Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Goldbach's conjectures
gbowpos
Next ⟩
gbopos
Metamath Proof Explorer
Ascii
Unicode
Theorem
gbowpos
Description:
Any weak odd Goldbach number is positive.
(Contributed by
AV
, 20-Jul-2020)
Ref
Expression
Assertion
gbowpos
⊢
Z
∈
GoldbachOddW
→
Z
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
isgbow
⊢
Z
∈
GoldbachOddW
↔
Z
∈
Odd
∧
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
Z
=
p
+
q
+
r
2
prmnn
⊢
p
∈
ℙ
→
p
∈
ℕ
3
prmnn
⊢
q
∈
ℙ
→
q
∈
ℕ
4
2
3
anim12i
⊢
p
∈
ℙ
∧
q
∈
ℙ
→
p
∈
ℕ
∧
q
∈
ℕ
5
4
adantr
⊢
p
∈
ℙ
∧
q
∈
ℙ
∧
r
∈
ℙ
→
p
∈
ℕ
∧
q
∈
ℕ
6
nnaddcl
⊢
p
∈
ℕ
∧
q
∈
ℕ
→
p
+
q
∈
ℕ
7
5
6
syl
⊢
p
∈
ℙ
∧
q
∈
ℙ
∧
r
∈
ℙ
→
p
+
q
∈
ℕ
8
prmnn
⊢
r
∈
ℙ
→
r
∈
ℕ
9
8
adantl
⊢
p
∈
ℙ
∧
q
∈
ℙ
∧
r
∈
ℙ
→
r
∈
ℕ
10
7
9
nnaddcld
⊢
p
∈
ℙ
∧
q
∈
ℙ
∧
r
∈
ℙ
→
p
+
q
+
r
∈
ℕ
11
eleq1
⊢
Z
=
p
+
q
+
r
→
Z
∈
ℕ
↔
p
+
q
+
r
∈
ℕ
12
10
11
syl5ibrcom
⊢
p
∈
ℙ
∧
q
∈
ℙ
∧
r
∈
ℙ
→
Z
=
p
+
q
+
r
→
Z
∈
ℕ
13
12
rexlimdva
⊢
p
∈
ℙ
∧
q
∈
ℙ
→
∃
r
∈
ℙ
Z
=
p
+
q
+
r
→
Z
∈
ℕ
14
13
a1i
⊢
Z
∈
Odd
→
p
∈
ℙ
∧
q
∈
ℙ
→
∃
r
∈
ℙ
Z
=
p
+
q
+
r
→
Z
∈
ℕ
15
14
rexlimdvv
⊢
Z
∈
Odd
→
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
Z
=
p
+
q
+
r
→
Z
∈
ℕ
16
15
imp
⊢
Z
∈
Odd
∧
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
Z
=
p
+
q
+
r
→
Z
∈
ℕ
17
1
16
sylbi
⊢
Z
∈
GoldbachOddW
→
Z
∈
ℕ