Metamath Proof Explorer


Theorem gcdabs1

Description: gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcdabs1 N M N gcd M = N gcd M

Proof

Step Hyp Ref Expression
1 oveq1 N = N N gcd M = N gcd M
2 1 a1i N M N = N N gcd M = N gcd M
3 neggcd N M -N gcd M = N gcd M
4 oveq1 N = N N gcd M = -N gcd M
5 4 eqeq1d N = N N gcd M = N gcd M -N gcd M = N gcd M
6 3 5 syl5ibrcom N M N = N N gcd M = N gcd M
7 zre N N
8 7 absord N N = N N = N
9 8 adantr N M N = N N = N
10 2 6 9 mpjaod N M N gcd M = N gcd M