Metamath Proof Explorer


Theorem gcdabsOLD

Description: Obsolete version of gcdabs as of 15-Sep-2024. (Contributed by Paul Chapman, 31-Mar-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion gcdabsOLD MNMgcdN=MgcdN

Proof

Step Hyp Ref Expression
1 zre MM
2 zre NN
3 absor MM=MM=M
4 absor NN=NN=N
5 3 4 anim12i MNM=MM=MN=NN=N
6 1 2 5 syl2an MNM=MM=MN=NN=N
7 oveq12 M=MN=NMgcdN=MgcdN
8 7 a1i MNM=MN=NMgcdN=MgcdN
9 oveq12 M=MN=NMgcdN=- MgcdN
10 neggcd MN- MgcdN=MgcdN
11 9 10 sylan9eqr MNM=MN=NMgcdN=MgcdN
12 11 ex MNM=MN=NMgcdN=MgcdN
13 oveq12 M=MN=NMgcdN=Mgcd- N
14 gcdneg MNMgcd- N=MgcdN
15 13 14 sylan9eqr MNM=MN=NMgcdN=MgcdN
16 15 ex MNM=MN=NMgcdN=MgcdN
17 oveq12 M=MN=NMgcdN=- Mgcd- N
18 znegcl MM
19 gcdneg MN- Mgcd- N=- MgcdN
20 18 19 sylan MN- Mgcd- N=- MgcdN
21 20 10 eqtrd MN- Mgcd- N=MgcdN
22 17 21 sylan9eqr MNM=MN=NMgcdN=MgcdN
23 22 ex MNM=MN=NMgcdN=MgcdN
24 8 12 16 23 ccased MNM=MM=MN=NN=NMgcdN=MgcdN
25 6 24 mpd MNMgcdN=MgcdN