Step |
Hyp |
Ref |
Expression |
1 |
|
gcdaddmlem.1 |
|
2 |
|
gcdaddmlem.2 |
|
3 |
|
gcdaddmlem.3 |
|
4 |
|
gcddvds |
|
5 |
2 3 4
|
mp2an |
|
6 |
5
|
simpli |
|
7 |
|
gcdcl |
|
8 |
2 3 7
|
mp2an |
|
9 |
8
|
nn0zi |
|
10 |
|
1z |
|
11 |
|
dvds2ln |
|
12 |
1 10 11
|
mpanl12 |
|
13 |
9 2 3 12
|
mp3an |
|
14 |
5 13
|
ax-mp |
|
15 |
|
zcn |
|
16 |
3 15
|
ax-mp |
|
17 |
16
|
mulid2i |
|
18 |
17
|
oveq2i |
|
19 |
14 18
|
breqtri |
|
20 |
|
zmulcl |
|
21 |
1 2 20
|
mp2an |
|
22 |
|
zaddcl |
|
23 |
21 3 22
|
mp2an |
|
24 |
|
dvdslegcd |
|
25 |
24
|
ex |
|
26 |
9 2 23 25
|
mp3an |
|
27 |
6 19 26
|
mp2ani |
|
28 |
|
gcddvds |
|
29 |
2 23 28
|
mp2an |
|
30 |
29
|
simpli |
|
31 |
|
gcdcl |
|
32 |
2 23 31
|
mp2an |
|
33 |
32
|
nn0zi |
|
34 |
|
znegcl |
|
35 |
1 34
|
ax-mp |
|
36 |
|
dvds2ln |
|
37 |
35 10 36
|
mpanl12 |
|
38 |
33 2 23 37
|
mp3an |
|
39 |
29 38
|
ax-mp |
|
40 |
|
zcn |
|
41 |
1 40
|
ax-mp |
|
42 |
|
zcn |
|
43 |
2 42
|
ax-mp |
|
44 |
41 43
|
mulneg1i |
|
45 |
|
zcn |
|
46 |
23 45
|
ax-mp |
|
47 |
46
|
mulid2i |
|
48 |
44 47
|
oveq12i |
|
49 |
41 43
|
mulcli |
|
50 |
49
|
negcli |
|
51 |
49
|
negidi |
|
52 |
49 50 51
|
addcomli |
|
53 |
52
|
oveq1i |
|
54 |
50 49 16
|
addassi |
|
55 |
16
|
addid2i |
|
56 |
53 54 55
|
3eqtr3i |
|
57 |
48 56
|
eqtri |
|
58 |
39 57
|
breqtri |
|
59 |
|
dvdslegcd |
|
60 |
59
|
ex |
|
61 |
33 2 3 60
|
mp3an |
|
62 |
30 58 61
|
mp2ani |
|
63 |
27 62
|
anim12i |
|
64 |
9
|
zrei |
|
65 |
33
|
zrei |
|
66 |
64 65
|
letri3i |
|
67 |
63 66
|
sylibr |
|
68 |
|
pm4.57 |
|
69 |
|
oveq2 |
|
70 |
41
|
mul01i |
|
71 |
69 70
|
eqtrdi |
|
72 |
71
|
oveq1d |
|
73 |
72 55
|
eqtrdi |
|
74 |
73
|
eqeq1d |
|
75 |
74
|
pm5.32i |
|
76 |
|
oveq12 |
|
77 |
|
oveq12 |
|
78 |
75 77
|
sylbir |
|
79 |
76 78
|
eqtr4d |
|
80 |
75 79
|
sylbi |
|
81 |
80 79
|
jaoi |
|
82 |
68 81
|
sylbi |
|
83 |
67 82
|
pm2.61i |
|