Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The greatest common divisor operator
gcdcllem2
Next ⟩
gcdcllem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
gcdcllem2
Description:
Lemma for
gcdn0cl
,
gcddvds
and
dvdslegcd
.
(Contributed by
Paul Chapman
, 21-Mar-2011)
Ref
Expression
Hypotheses
gcdcllem2.1
⊢
S
=
z
∈
ℤ
|
∀
n
∈
M
N
z
∥
n
gcdcllem2.2
⊢
R
=
z
∈
ℤ
|
z
∥
M
∧
z
∥
N
Assertion
gcdcllem2
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
R
=
S
Proof
Step
Hyp
Ref
Expression
1
gcdcllem2.1
⊢
S
=
z
∈
ℤ
|
∀
n
∈
M
N
z
∥
n
2
gcdcllem2.2
⊢
R
=
z
∈
ℤ
|
z
∥
M
∧
z
∥
N
3
breq1
⊢
z
=
x
→
z
∥
M
↔
x
∥
M
4
breq1
⊢
z
=
x
→
z
∥
N
↔
x
∥
N
5
3
4
anbi12d
⊢
z
=
x
→
z
∥
M
∧
z
∥
N
↔
x
∥
M
∧
x
∥
N
6
5
2
elrab2
⊢
x
∈
R
↔
x
∈
ℤ
∧
x
∥
M
∧
x
∥
N
7
breq1
⊢
z
=
x
→
z
∥
n
↔
x
∥
n
8
7
ralbidv
⊢
z
=
x
→
∀
n
∈
M
N
z
∥
n
↔
∀
n
∈
M
N
x
∥
n
9
8
1
elrab2
⊢
x
∈
S
↔
x
∈
ℤ
∧
∀
n
∈
M
N
x
∥
n
10
breq2
⊢
n
=
M
→
x
∥
n
↔
x
∥
M
11
breq2
⊢
n
=
N
→
x
∥
n
↔
x
∥
N
12
10
11
ralprg
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
∀
n
∈
M
N
x
∥
n
↔
x
∥
M
∧
x
∥
N
13
12
anbi2d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
x
∈
ℤ
∧
∀
n
∈
M
N
x
∥
n
↔
x
∈
ℤ
∧
x
∥
M
∧
x
∥
N
14
9
13
syl5bb
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
x
∈
S
↔
x
∈
ℤ
∧
x
∥
M
∧
x
∥
N
15
6
14
bitr4id
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
x
∈
R
↔
x
∈
S
16
15
eqrdv
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
R
=
S