Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
simp1 |
|
4 |
|
divides |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
simp2 |
|
7 |
|
divides |
|
8 |
2 6 7
|
syl2anc |
|
9 |
5 8
|
anbi12d |
|
10 |
|
reeanv |
|
11 |
9 10
|
bitr4di |
|
12 |
|
gcdcl |
|
13 |
12
|
nn0cnd |
|
14 |
13
|
3adant3 |
|
15 |
|
nncn |
|
16 |
15
|
3ad2ant3 |
|
17 |
|
nnne0 |
|
18 |
17
|
3ad2ant3 |
|
19 |
14 16 18
|
divcan4d |
|
20 |
|
nnnn0 |
|
21 |
|
mulgcdr |
|
22 |
20 21
|
syl3an3 |
|
23 |
22
|
oveq1d |
|
24 |
|
zcn |
|
25 |
24
|
3ad2ant1 |
|
26 |
25 16 18
|
divcan4d |
|
27 |
|
zcn |
|
28 |
27
|
3ad2ant2 |
|
29 |
28 16 18
|
divcan4d |
|
30 |
26 29
|
oveq12d |
|
31 |
19 23 30
|
3eqtr4d |
|
32 |
|
oveq12 |
|
33 |
32
|
oveq1d |
|
34 |
|
oveq1 |
|
35 |
|
oveq1 |
|
36 |
34 35
|
oveqan12d |
|
37 |
33 36
|
eqeq12d |
|
38 |
31 37
|
syl5ibcom |
|
39 |
38
|
3expa |
|
40 |
39
|
expcom |
|
41 |
40
|
rexlimdvv |
|
42 |
41
|
3ad2ant3 |
|
43 |
11 42
|
sylbid |
|
44 |
43
|
imp |
|