Metamath Proof Explorer


Theorem gcddvdslcm

Description: The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion gcddvdslcm M N M gcd N M lcm N

Proof

Step Hyp Ref Expression
1 gcdcl M N M gcd N 0
2 1 nn0zd M N M gcd N
3 simpl M N M
4 lcmcl M N M lcm N 0
5 4 nn0zd M N M lcm N
6 gcddvds M N M gcd N M M gcd N N
7 6 simpld M N M gcd N M
8 dvdslcm M N M M lcm N N M lcm N
9 8 simpld M N M M lcm N
10 2 3 5 7 9 dvdstrd M N M gcd N M lcm N