Metamath Proof Explorer


Theorem gcdf

Description: Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion gcdf gcd : × 0

Proof

Step Hyp Ref Expression
1 gcdval x y x gcd y = if x = 0 y = 0 0 sup n | n x n y <
2 gcdcl x y x gcd y 0
3 1 2 eqeltrrd x y if x = 0 y = 0 0 sup n | n x n y < 0
4 3 rgen2 x y if x = 0 y = 0 0 sup n | n x n y < 0
5 df-gcd gcd = x , y if x = 0 y = 0 0 sup n | n x n y <
6 5 fmpo x y if x = 0 y = 0 0 sup n | n x n y < 0 gcd : × 0
7 4 6 mpbi gcd : × 0