Metamath Proof Explorer


Theorem gcdmultipleOLD

Description: Obsolete proof of gcdmultiple as of 12-Jan-2024. The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion gcdmultipleOLD M N M gcd M N = M

Proof

Step Hyp Ref Expression
1 oveq2 k = 1 M k = M 1
2 1 oveq2d k = 1 M gcd M k = M gcd M 1
3 2 eqeq1d k = 1 M gcd M k = M M gcd M 1 = M
4 3 imbi2d k = 1 M M gcd M k = M M M gcd M 1 = M
5 oveq2 k = n M k = M n
6 5 oveq2d k = n M gcd M k = M gcd M n
7 6 eqeq1d k = n M gcd M k = M M gcd M n = M
8 7 imbi2d k = n M M gcd M k = M M M gcd M n = M
9 oveq2 k = n + 1 M k = M n + 1
10 9 oveq2d k = n + 1 M gcd M k = M gcd M n + 1
11 10 eqeq1d k = n + 1 M gcd M k = M M gcd M n + 1 = M
12 11 imbi2d k = n + 1 M M gcd M k = M M M gcd M n + 1 = M
13 oveq2 k = N M k = M N
14 13 oveq2d k = N M gcd M k = M gcd M N
15 14 eqeq1d k = N M gcd M k = M M gcd M N = M
16 15 imbi2d k = N M M gcd M k = M M M gcd M N = M
17 nncn M M
18 17 mulid1d M M 1 = M
19 18 oveq2d M M gcd M 1 = M gcd M
20 nnz M M
21 gcdid M M gcd M = M
22 20 21 syl M M gcd M = M
23 nnre M M
24 nnnn0 M M 0
25 24 nn0ge0d M 0 M
26 23 25 absidd M M = M
27 22 26 eqtrd M M gcd M = M
28 19 27 eqtrd M M gcd M 1 = M
29 1z 1
30 nnz n n
31 zmulcl M n M n
32 20 30 31 syl2an M n M n
33 gcdaddm 1 M M n M gcd M n = M gcd M n + 1 M
34 29 20 32 33 mp3an2ani M n M gcd M n = M gcd M n + 1 M
35 nncn n n
36 ax-1cn 1
37 adddi M n 1 M n + 1 = M n + M 1
38 36 37 mp3an3 M n M n + 1 = M n + M 1
39 mulcom M 1 M 1 = 1 M
40 36 39 mpan2 M M 1 = 1 M
41 40 adantr M n M 1 = 1 M
42 41 oveq2d M n M n + M 1 = M n + 1 M
43 38 42 eqtrd M n M n + 1 = M n + 1 M
44 17 35 43 syl2an M n M n + 1 = M n + 1 M
45 44 oveq2d M n M gcd M n + 1 = M gcd M n + 1 M
46 34 45 eqtr4d M n M gcd M n = M gcd M n + 1
47 46 eqeq1d M n M gcd M n = M M gcd M n + 1 = M
48 47 biimpd M n M gcd M n = M M gcd M n + 1 = M
49 48 expcom n M M gcd M n = M M gcd M n + 1 = M
50 49 a2d n M M gcd M n = M M M gcd M n + 1 = M
51 4 8 12 16 28 50 nnind N M M gcd M N = M
52 51 impcom M N M gcd M N = M