Metamath Proof Explorer


Theorem gcdmultiplez

Description: The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by AV, 12-Jan-2023)

Ref Expression
Assertion gcdmultiplez M N M gcd M N = M

Proof

Step Hyp Ref Expression
1 nncn M M
2 1 adantr M N M
3 zcn N N
4 3 adantl M N N
5 2 4 mulcomd M N M N = N M
6 5 oveq2d M N M gcd M N = M gcd N M
7 nnnn0 M M 0
8 7 adantr M N M 0
9 simpr M N N
10 8 9 gcdmultipled M N M gcd N M = M
11 6 10 eqtrd M N M gcd M N = M