Metamath Proof Explorer


Theorem gch3

Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gch3 GCH = V x On suc x 𝒫 x

Proof

Step Hyp Ref Expression
1 simpr GCH = V x On x On
2 fvex x V
3 simpl GCH = V x On GCH = V
4 2 3 eleqtrrid GCH = V x On x GCH
5 fvex suc x V
6 5 3 eleqtrrid GCH = V x On suc x GCH
7 gchaleph2 x On x GCH suc x GCH suc x 𝒫 x
8 1 4 6 7 syl3anc GCH = V x On suc x 𝒫 x
9 8 ralrimiva GCH = V x On suc x 𝒫 x
10 alephgch suc x 𝒫 x x GCH
11 10 ralimi x On suc x 𝒫 x x On x GCH
12 alephfnon Fn On
13 ffnfv : On GCH Fn On x On x GCH
14 12 13 mpbiran : On GCH x On x GCH
15 11 14 sylibr x On suc x 𝒫 x : On GCH
16 15 frnd x On suc x 𝒫 x ran GCH
17 gch2 GCH = V ran GCH
18 16 17 sylibr x On suc x 𝒫 x GCH = V
19 9 18 impbii GCH = V x On suc x 𝒫 x