Metamath Proof Explorer


Theorem gchac

Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchac GCH = V CHOICE

Proof

Step Hyp Ref Expression
1 vex x V
2 omex ω V
3 1 2 unex x ω V
4 ssun2 ω x ω
5 ssdomg x ω V ω x ω ω x ω
6 3 4 5 mp2 ω x ω
7 id GCH = V GCH = V
8 3 7 eleqtrrid GCH = V x ω GCH
9 3 pwex 𝒫 x ω V
10 9 7 eleqtrrid GCH = V 𝒫 x ω GCH
11 gchacg ω x ω x ω GCH 𝒫 x ω GCH 𝒫 x ω dom card
12 6 8 10 11 mp3an2i GCH = V 𝒫 x ω dom card
13 3 canth2 x ω 𝒫 x ω
14 sdomdom x ω 𝒫 x ω x ω 𝒫 x ω
15 13 14 ax-mp x ω 𝒫 x ω
16 numdom 𝒫 x ω dom card x ω 𝒫 x ω x ω dom card
17 12 15 16 sylancl GCH = V x ω dom card
18 ssun1 x x ω
19 ssnum x ω dom card x x ω x dom card
20 17 18 19 sylancl GCH = V x dom card
21 1 a1i GCH = V x V
22 20 21 2thd GCH = V x dom card x V
23 22 eqrdv GCH = V dom card = V
24 dfac10 CHOICE dom card = V
25 23 24 sylibr GCH = V CHOICE