Description: If ( alephA ) is a GCH-set and its powerset is well-orderable, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gchaleph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsucpw2 | |
|
2 | alephon | |
|
3 | onenon | |
|
4 | 2 3 | ax-mp | |
5 | simp3 | |
|
6 | domtri2 | |
|
7 | 4 5 6 | sylancr | |
8 | 1 7 | mpbiri | |
9 | fvex | |
|
10 | simp1 | |
|
11 | alephgeom | |
|
12 | 10 11 | sylib | |
13 | ssdomg | |
|
14 | 9 12 13 | mpsyl | |
15 | domnsym | |
|
16 | 14 15 | syl | |
17 | isfinite | |
|
18 | 16 17 | sylnibr | |
19 | simp2 | |
|
20 | alephordilem1 | |
|
21 | 20 | 3ad2ant1 | |
22 | gchi | |
|
23 | 22 | 3expia | |
24 | 19 21 23 | syl2anc | |
25 | 18 24 | mtod | |
26 | domtri2 | |
|
27 | 5 4 26 | sylancl | |
28 | 25 27 | mpbird | |
29 | sbth | |
|
30 | 8 28 29 | syl2anc | |