Metamath Proof Explorer


Theorem gchaleph

Description: If ( alephA ) is a GCH-set and its powerset is well-orderable, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchaleph AOnAGCH𝒫AdomcardsucA𝒫A

Proof

Step Hyp Ref Expression
1 alephsucpw2 ¬𝒫AsucA
2 alephon sucAOn
3 onenon sucAOnsucAdomcard
4 2 3 ax-mp sucAdomcard
5 simp3 AOnAGCH𝒫Adomcard𝒫Adomcard
6 domtri2 sucAdomcard𝒫AdomcardsucA𝒫A¬𝒫AsucA
7 4 5 6 sylancr AOnAGCH𝒫AdomcardsucA𝒫A¬𝒫AsucA
8 1 7 mpbiri AOnAGCH𝒫AdomcardsucA𝒫A
9 fvex AV
10 simp1 AOnAGCH𝒫AdomcardAOn
11 alephgeom AOnωA
12 10 11 sylib AOnAGCH𝒫AdomcardωA
13 ssdomg AVωAωA
14 9 12 13 mpsyl AOnAGCH𝒫AdomcardωA
15 domnsym ωA¬Aω
16 14 15 syl AOnAGCH𝒫Adomcard¬Aω
17 isfinite AFinAω
18 16 17 sylnibr AOnAGCH𝒫Adomcard¬AFin
19 simp2 AOnAGCH𝒫AdomcardAGCH
20 alephordilem1 AOnAsucA
21 20 3ad2ant1 AOnAGCH𝒫AdomcardAsucA
22 gchi AGCHAsucAsucA𝒫AAFin
23 22 3expia AGCHAsucAsucA𝒫AAFin
24 19 21 23 syl2anc AOnAGCH𝒫AdomcardsucA𝒫AAFin
25 18 24 mtod AOnAGCH𝒫Adomcard¬sucA𝒫A
26 domtri2 𝒫AdomcardsucAdomcard𝒫AsucA¬sucA𝒫A
27 5 4 26 sylancl AOnAGCH𝒫Adomcard𝒫AsucA¬sucA𝒫A
28 25 27 mpbird AOnAGCH𝒫Adomcard𝒫AsucA
29 sbth sucA𝒫A𝒫AsucAsucA𝒫A
30 8 28 29 syl2anc AOnAGCH𝒫AdomcardsucA𝒫A