Metamath Proof Explorer


Theorem gchdju1

Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion gchdju1 A GCH ¬ A Fin A ⊔︀ 1 𝑜 A

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 1 a1i ¬ A Fin 1 𝑜 ω
3 djudoml A GCH 1 𝑜 ω A A ⊔︀ 1 𝑜
4 2 3 sylan2 A GCH ¬ A Fin A A ⊔︀ 1 𝑜
5 simpr A GCH ¬ A Fin ¬ A Fin
6 nnfi 1 𝑜 ω 1 𝑜 Fin
7 1 6 mp1i ¬ A Fin 1 𝑜 Fin
8 fidomtri2 A GCH 1 𝑜 Fin A 1 𝑜 ¬ 1 𝑜 A
9 7 8 sylan2 A GCH ¬ A Fin A 1 𝑜 ¬ 1 𝑜 A
10 1 6 mp1i A GCH ¬ A Fin 1 𝑜 Fin
11 domfi 1 𝑜 Fin A 1 𝑜 A Fin
12 11 ex 1 𝑜 Fin A 1 𝑜 A Fin
13 10 12 syl A GCH ¬ A Fin A 1 𝑜 A Fin
14 9 13 sylbird A GCH ¬ A Fin ¬ 1 𝑜 A A Fin
15 5 14 mt3d A GCH ¬ A Fin 1 𝑜 A
16 canthp1 1 𝑜 A A ⊔︀ 1 𝑜 𝒫 A
17 15 16 syl A GCH ¬ A Fin A ⊔︀ 1 𝑜 𝒫 A
18 4 17 jca A GCH ¬ A Fin A A ⊔︀ 1 𝑜 A ⊔︀ 1 𝑜 𝒫 A
19 gchen1 A GCH ¬ A Fin A A ⊔︀ 1 𝑜 A ⊔︀ 1 𝑜 𝒫 A A A ⊔︀ 1 𝑜
20 18 19 mpdan A GCH ¬ A Fin A A ⊔︀ 1 𝑜
21 20 ensymd A GCH ¬ A Fin A ⊔︀ 1 𝑜 A