Metamath Proof Explorer


Theorem gchdjuidm

Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchdjuidm A GCH ¬ A Fin A ⊔︀ A A

Proof

Step Hyp Ref Expression
1 simpl A GCH ¬ A Fin A GCH
2 djudoml A GCH A GCH A A ⊔︀ A
3 1 1 2 syl2anc A GCH ¬ A Fin A A ⊔︀ A
4 canth2g A GCH A 𝒫 A
5 4 adantr A GCH ¬ A Fin A 𝒫 A
6 sdomdom A 𝒫 A A 𝒫 A
7 5 6 syl A GCH ¬ A Fin A 𝒫 A
8 reldom Rel
9 8 brrelex1i A 𝒫 A A V
10 djudom1 A 𝒫 A A V A ⊔︀ A 𝒫 A ⊔︀ A
11 9 10 mpdan A 𝒫 A A ⊔︀ A 𝒫 A ⊔︀ A
12 9 pwexd A 𝒫 A 𝒫 A V
13 djudom2 A 𝒫 A 𝒫 A V 𝒫 A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A
14 12 13 mpdan A 𝒫 A 𝒫 A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A
15 domtr A ⊔︀ A 𝒫 A ⊔︀ A 𝒫 A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A
16 11 14 15 syl2anc A 𝒫 A A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A
17 7 16 syl A GCH ¬ A Fin A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A
18 pwdju1 A GCH 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜
19 18 adantr A GCH ¬ A Fin 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜
20 gchdju1 A GCH ¬ A Fin A ⊔︀ 1 𝑜 A
21 pwen A ⊔︀ 1 𝑜 A 𝒫 A ⊔︀ 1 𝑜 𝒫 A
22 20 21 syl A GCH ¬ A Fin 𝒫 A ⊔︀ 1 𝑜 𝒫 A
23 entr 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜 𝒫 A ⊔︀ 1 𝑜 𝒫 A 𝒫 A ⊔︀ 𝒫 A 𝒫 A
24 19 22 23 syl2anc A GCH ¬ A Fin 𝒫 A ⊔︀ 𝒫 A 𝒫 A
25 domentr A ⊔︀ A 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 𝒫 A 𝒫 A A ⊔︀ A 𝒫 A
26 17 24 25 syl2anc A GCH ¬ A Fin A ⊔︀ A 𝒫 A
27 gchinf A GCH ¬ A Fin ω A
28 pwdjundom ω A ¬ 𝒫 A A ⊔︀ A
29 27 28 syl A GCH ¬ A Fin ¬ 𝒫 A A ⊔︀ A
30 ensym A ⊔︀ A 𝒫 A 𝒫 A A ⊔︀ A
31 endom 𝒫 A A ⊔︀ A 𝒫 A A ⊔︀ A
32 30 31 syl A ⊔︀ A 𝒫 A 𝒫 A A ⊔︀ A
33 29 32 nsyl A GCH ¬ A Fin ¬ A ⊔︀ A 𝒫 A
34 brsdom A ⊔︀ A 𝒫 A A ⊔︀ A 𝒫 A ¬ A ⊔︀ A 𝒫 A
35 26 33 34 sylanbrc A GCH ¬ A Fin A ⊔︀ A 𝒫 A
36 3 35 jca A GCH ¬ A Fin A A ⊔︀ A A ⊔︀ A 𝒫 A
37 gchen1 A GCH ¬ A Fin A A ⊔︀ A A ⊔︀ A 𝒫 A A A ⊔︀ A
38 36 37 mpdan A GCH ¬ A Fin A A ⊔︀ A
39 38 ensymd A GCH ¬ A Fin A ⊔︀ A A