Metamath Proof Explorer


Theorem gchdomtri

Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchdomtri A GCH A ⊔︀ A A B 𝒫 A A B B A

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 1 con3i ¬ A B ¬ A B
3 reldom Rel
4 3 brrelex1i B 𝒫 A B V
5 4 3ad2ant3 A GCH A ⊔︀ A A B 𝒫 A B V
6 fidomtri2 B V A Fin B A ¬ A B
7 5 6 sylan A GCH A ⊔︀ A A B 𝒫 A A Fin B A ¬ A B
8 2 7 syl5ibr A GCH A ⊔︀ A A B 𝒫 A A Fin ¬ A B B A
9 8 orrd A GCH A ⊔︀ A A B 𝒫 A A Fin A B B A
10 simp1 A GCH A ⊔︀ A A B 𝒫 A A GCH
11 10 adantr A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin A GCH
12 simpr A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin ¬ A Fin
13 djudoml A GCH B V A A ⊔︀ B
14 10 5 13 syl2anc A GCH A ⊔︀ A A B 𝒫 A A A ⊔︀ B
15 14 adantr A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin A A ⊔︀ B
16 djulepw A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A
17 16 3adant1 A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A
18 17 adantr A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin A ⊔︀ B 𝒫 A
19 gchor A GCH ¬ A Fin A A ⊔︀ B A ⊔︀ B 𝒫 A A A ⊔︀ B A ⊔︀ B 𝒫 A
20 11 12 15 18 19 syl22anc A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin A A ⊔︀ B A ⊔︀ B 𝒫 A
21 djudoml B V A GCH B B ⊔︀ A
22 5 10 21 syl2anc A GCH A ⊔︀ A A B 𝒫 A B B ⊔︀ A
23 djucomen B V A GCH B ⊔︀ A A ⊔︀ B
24 5 10 23 syl2anc A GCH A ⊔︀ A A B 𝒫 A B ⊔︀ A A ⊔︀ B
25 domentr B B ⊔︀ A B ⊔︀ A A ⊔︀ B B A ⊔︀ B
26 22 24 25 syl2anc A GCH A ⊔︀ A A B 𝒫 A B A ⊔︀ B
27 domen2 A A ⊔︀ B B A B A ⊔︀ B
28 26 27 syl5ibrcom A GCH A ⊔︀ A A B 𝒫 A A A ⊔︀ B B A
29 28 imp A GCH A ⊔︀ A A B 𝒫 A A A ⊔︀ B B A
30 29 olcd A GCH A ⊔︀ A A B 𝒫 A A A ⊔︀ B A B B A
31 simpl1 A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A A GCH
32 canth2g A GCH A 𝒫 A
33 sdomdom A 𝒫 A A 𝒫 A
34 31 32 33 3syl A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A A 𝒫 A
35 simpl2 A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A A ⊔︀ A A
36 pwen A ⊔︀ A A 𝒫 A ⊔︀ A 𝒫 A
37 35 36 syl A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A 𝒫 A ⊔︀ A 𝒫 A
38 enen2 A ⊔︀ B 𝒫 A 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A ⊔︀ A 𝒫 A
39 38 adantl A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A ⊔︀ A 𝒫 A
40 37 39 mpbird A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A 𝒫 A ⊔︀ A A ⊔︀ B
41 endom 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A ⊔︀ A A ⊔︀ B
42 pwdjudom 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A B
43 40 41 42 3syl A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A 𝒫 A B
44 domtr A 𝒫 A 𝒫 A B A B
45 34 43 44 syl2anc A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A A B
46 45 orcd A GCH A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A A B B A
47 30 46 jaodan A GCH A ⊔︀ A A B 𝒫 A A A ⊔︀ B A ⊔︀ B 𝒫 A A B B A
48 20 47 syldan A GCH A ⊔︀ A A B 𝒫 A ¬ A Fin A B B A
49 9 48 pm2.61dan A GCH A ⊔︀ A A B 𝒫 A A B B A