Metamath Proof Explorer


Theorem gchen1

Description: If A <_ B < ~P A , and A is an infinite GCH-set, then A = B in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchen1 A GCH ¬ A Fin A B B 𝒫 A A B

Proof

Step Hyp Ref Expression
1 simprl A GCH ¬ A Fin A B B 𝒫 A A B
2 gchi A GCH A B B 𝒫 A A Fin
3 2 3com23 A GCH B 𝒫 A A B A Fin
4 3 3expia A GCH B 𝒫 A A B A Fin
5 4 con3dimp A GCH B 𝒫 A ¬ A Fin ¬ A B
6 5 an32s A GCH ¬ A Fin B 𝒫 A ¬ A B
7 6 adantrl A GCH ¬ A Fin A B B 𝒫 A ¬ A B
8 bren2 A B A B ¬ A B
9 1 7 8 sylanbrc A GCH ¬ A Fin A B B 𝒫 A A B