Metamath Proof Explorer


Theorem gchen2

Description: If A < B <_ ~P A , and A is an infinite GCH-set, then B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchen2 A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A

Proof

Step Hyp Ref Expression
1 simprr A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A
2 gchi A GCH A B B 𝒫 A A Fin
3 2 3expia A GCH A B B 𝒫 A A Fin
4 3 con3dimp A GCH A B ¬ A Fin ¬ B 𝒫 A
5 4 an32s A GCH ¬ A Fin A B ¬ B 𝒫 A
6 5 adantrr A GCH ¬ A Fin A B B 𝒫 A ¬ B 𝒫 A
7 bren2 B 𝒫 A B 𝒫 A ¬ B 𝒫 A
8 1 6 7 sylanbrc A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A