Metamath Proof Explorer


Theorem gchi

Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchi A GCH A B B 𝒫 A A Fin

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i B 𝒫 A B V
3 2 adantl A B B 𝒫 A B V
4 breq2 x = B A x A B
5 breq1 x = B x 𝒫 A B 𝒫 A
6 4 5 anbi12d x = B A x x 𝒫 A A B B 𝒫 A
7 6 spcegv B V A B B 𝒫 A x A x x 𝒫 A
8 3 7 mpcom A B B 𝒫 A x A x x 𝒫 A
9 df-ex x A x x 𝒫 A ¬ x ¬ A x x 𝒫 A
10 8 9 sylib A B B 𝒫 A ¬ x ¬ A x x 𝒫 A
11 elgch A GCH A GCH A Fin x ¬ A x x 𝒫 A
12 11 ibi A GCH A Fin x ¬ A x x 𝒫 A
13 12 orcomd A GCH x ¬ A x x 𝒫 A A Fin
14 13 ord A GCH ¬ x ¬ A x x 𝒫 A A Fin
15 10 14 syl5 A GCH A B B 𝒫 A A Fin
16 15 3impib A GCH A B B 𝒫 A A Fin