Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
The Generalized Continuum Hypothesis
Sets satisfying the Generalized Continuum Hypothesis
gchinf
Next ⟩
pwfseqlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
gchinf
Description:
An infinite GCH-set is Dedekind-infinite.
(Contributed by
Mario Carneiro
, 31-May-2015)
Ref
Expression
Assertion
gchinf
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
ω
≼
A
Proof
Step
Hyp
Ref
Expression
1
gchdju1
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
A
⊔︀
1
𝑜
≈
A
2
1
ensymd
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
A
≈
A
⊔︀
1
𝑜
3
isfin4-2
⊢
A
∈
GCH
→
A
∈
Fin
IV
↔
¬
ω
≼
A
4
3
adantr
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
A
∈
Fin
IV
↔
¬
ω
≼
A
5
isfin4p1
⊢
A
∈
Fin
IV
↔
A
≺
A
⊔︀
1
𝑜
6
sdomnen
⊢
A
≺
A
⊔︀
1
𝑜
→
¬
A
≈
A
⊔︀
1
𝑜
7
5
6
sylbi
⊢
A
∈
Fin
IV
→
¬
A
≈
A
⊔︀
1
𝑜
8
4
7
syl6bir
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
¬
ω
≼
A
→
¬
A
≈
A
⊔︀
1
𝑜
9
2
8
mt4d
⊢
A
∈
GCH
∧
¬
A
∈
Fin
→
ω
≼
A