Metamath Proof Explorer


Theorem gchinf

Description: An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchinf A GCH ¬ A Fin ω A

Proof

Step Hyp Ref Expression
1 gchdju1 A GCH ¬ A Fin A ⊔︀ 1 𝑜 A
2 1 ensymd A GCH ¬ A Fin A A ⊔︀ 1 𝑜
3 isfin4-2 A GCH A FinIV ¬ ω A
4 3 adantr A GCH ¬ A Fin A FinIV ¬ ω A
5 isfin4p1 A FinIV A A ⊔︀ 1 𝑜
6 sdomnen A A ⊔︀ 1 𝑜 ¬ A A ⊔︀ 1 𝑜
7 5 6 sylbi A FinIV ¬ A A ⊔︀ 1 𝑜
8 4 7 syl6bir A GCH ¬ A Fin ¬ ω A ¬ A A ⊔︀ 1 𝑜
9 2 8 mt4d A GCH ¬ A Fin ω A