Metamath Proof Explorer


Theorem gchor

Description: If A <_ B <_ ~P A , and A is an infinite GCH-set, then either A = B or B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchor A GCH ¬ A Fin A B B 𝒫 A A B B 𝒫 A

Proof

Step Hyp Ref Expression
1 simprr A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A
2 brdom2 B 𝒫 A B 𝒫 A B 𝒫 A
3 1 2 sylib A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A B 𝒫 A
4 gchen1 A GCH ¬ A Fin A B B 𝒫 A A B
5 4 expr A GCH ¬ A Fin A B B 𝒫 A A B
6 5 adantrr A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A A B
7 6 orim1d A GCH ¬ A Fin A B B 𝒫 A B 𝒫 A B 𝒫 A A B B 𝒫 A
8 3 7 mpd A GCH ¬ A Fin A B B 𝒫 A A B B 𝒫 A