Metamath Proof Explorer


Theorem gchpwdom

Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of KanamoriPincus p. 421. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchpwdom ω A A GCH B GCH A B 𝒫 A B

Proof

Step Hyp Ref Expression
1 simpl2 ω A A GCH B GCH A B A GCH
2 1 pwexd ω A A GCH B GCH A B 𝒫 A V
3 simpl3 ω A A GCH B GCH A B B GCH
4 djudoml 𝒫 A V B GCH 𝒫 A 𝒫 A ⊔︀ B
5 2 3 4 syl2anc ω A A GCH B GCH A B 𝒫 A 𝒫 A ⊔︀ B
6 domen2 B 𝒫 A ⊔︀ B 𝒫 A B 𝒫 A 𝒫 A ⊔︀ B
7 5 6 syl5ibrcom ω A A GCH B GCH A B B 𝒫 A ⊔︀ B 𝒫 A B
8 djucomen B GCH 𝒫 A V B ⊔︀ 𝒫 A 𝒫 A ⊔︀ B
9 3 2 8 syl2anc ω A A GCH B GCH A B B ⊔︀ 𝒫 A 𝒫 A ⊔︀ B
10 entr B ⊔︀ 𝒫 A 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 B B ⊔︀ 𝒫 A 𝒫 B
11 10 ex B ⊔︀ 𝒫 A 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 B B ⊔︀ 𝒫 A 𝒫 B
12 9 11 syl ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B B ⊔︀ 𝒫 A 𝒫 B
13 ensym B ⊔︀ 𝒫 A 𝒫 B 𝒫 B B ⊔︀ 𝒫 A
14 endom 𝒫 B B ⊔︀ 𝒫 A 𝒫 B B ⊔︀ 𝒫 A
15 13 14 syl B ⊔︀ 𝒫 A 𝒫 B 𝒫 B B ⊔︀ 𝒫 A
16 12 15 syl6 ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B 𝒫 B B ⊔︀ 𝒫 A
17 domsdomtr ω A A B ω B
18 17 3ad2antl1 ω A A GCH B GCH A B ω B
19 sdomnsym ω B ¬ B ω
20 18 19 syl ω A A GCH B GCH A B ¬ B ω
21 isfinite B Fin B ω
22 20 21 sylnibr ω A A GCH B GCH A B ¬ B Fin
23 gchdjuidm B GCH ¬ B Fin B ⊔︀ B B
24 3 22 23 syl2anc ω A A GCH B GCH A B B ⊔︀ B B
25 pwen B ⊔︀ B B 𝒫 B ⊔︀ B 𝒫 B
26 domen1 𝒫 B ⊔︀ B 𝒫 B 𝒫 B ⊔︀ B B ⊔︀ 𝒫 A 𝒫 B B ⊔︀ 𝒫 A
27 24 25 26 3syl ω A A GCH B GCH A B 𝒫 B ⊔︀ B B ⊔︀ 𝒫 A 𝒫 B B ⊔︀ 𝒫 A
28 pwdjudom 𝒫 B ⊔︀ B B ⊔︀ 𝒫 A 𝒫 B 𝒫 A
29 canth2g B GCH B 𝒫 B
30 sdomdomtr B 𝒫 B 𝒫 B 𝒫 A B 𝒫 A
31 30 ex B 𝒫 B 𝒫 B 𝒫 A B 𝒫 A
32 3 29 31 3syl ω A A GCH B GCH A B 𝒫 B 𝒫 A B 𝒫 A
33 gchi A GCH A B B 𝒫 A A Fin
34 33 3expia A GCH A B B 𝒫 A A Fin
35 34 3ad2antl2 ω A A GCH B GCH A B B 𝒫 A A Fin
36 isfinite A Fin A ω
37 simpl1 ω A A GCH B GCH A B ω A
38 domnsym ω A ¬ A ω
39 37 38 syl ω A A GCH B GCH A B ¬ A ω
40 39 pm2.21d ω A A GCH B GCH A B A ω 𝒫 A B
41 36 40 syl5bi ω A A GCH B GCH A B A Fin 𝒫 A B
42 32 35 41 3syld ω A A GCH B GCH A B 𝒫 B 𝒫 A 𝒫 A B
43 28 42 syl5 ω A A GCH B GCH A B 𝒫 B ⊔︀ B B ⊔︀ 𝒫 A 𝒫 A B
44 27 43 sylbird ω A A GCH B GCH A B 𝒫 B B ⊔︀ 𝒫 A 𝒫 A B
45 16 44 syld ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B 𝒫 A B
46 djudoml B GCH 𝒫 A V B B ⊔︀ 𝒫 A
47 3 2 46 syl2anc ω A A GCH B GCH A B B B ⊔︀ 𝒫 A
48 domentr B B ⊔︀ 𝒫 A B ⊔︀ 𝒫 A 𝒫 A ⊔︀ B B 𝒫 A ⊔︀ B
49 47 9 48 syl2anc ω A A GCH B GCH A B B 𝒫 A ⊔︀ B
50 sdomdom A B A B
51 50 adantl ω A A GCH B GCH A B A B
52 pwdom A B 𝒫 A 𝒫 B
53 51 52 syl ω A A GCH B GCH A B 𝒫 A 𝒫 B
54 djudom1 𝒫 A 𝒫 B B GCH 𝒫 A ⊔︀ B 𝒫 B ⊔︀ B
55 53 3 54 syl2anc ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B ⊔︀ B
56 sdomdom B 𝒫 B B 𝒫 B
57 3 29 56 3syl ω A A GCH B GCH A B B 𝒫 B
58 3 pwexd ω A A GCH B GCH A B 𝒫 B V
59 djudom2 B 𝒫 B 𝒫 B V 𝒫 B ⊔︀ B 𝒫 B ⊔︀ 𝒫 B
60 57 58 59 syl2anc ω A A GCH B GCH A B 𝒫 B ⊔︀ B 𝒫 B ⊔︀ 𝒫 B
61 domtr 𝒫 A ⊔︀ B 𝒫 B ⊔︀ B 𝒫 B ⊔︀ B 𝒫 B ⊔︀ 𝒫 B 𝒫 A ⊔︀ B 𝒫 B ⊔︀ 𝒫 B
62 55 60 61 syl2anc ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B ⊔︀ 𝒫 B
63 pwdju1 B GCH 𝒫 B ⊔︀ 𝒫 B 𝒫 B ⊔︀ 1 𝑜
64 3 63 syl ω A A GCH B GCH A B 𝒫 B ⊔︀ 𝒫 B 𝒫 B ⊔︀ 1 𝑜
65 gchdju1 B GCH ¬ B Fin B ⊔︀ 1 𝑜 B
66 3 22 65 syl2anc ω A A GCH B GCH A B B ⊔︀ 1 𝑜 B
67 pwen B ⊔︀ 1 𝑜 B 𝒫 B ⊔︀ 1 𝑜 𝒫 B
68 66 67 syl ω A A GCH B GCH A B 𝒫 B ⊔︀ 1 𝑜 𝒫 B
69 entr 𝒫 B ⊔︀ 𝒫 B 𝒫 B ⊔︀ 1 𝑜 𝒫 B ⊔︀ 1 𝑜 𝒫 B 𝒫 B ⊔︀ 𝒫 B 𝒫 B
70 64 68 69 syl2anc ω A A GCH B GCH A B 𝒫 B ⊔︀ 𝒫 B 𝒫 B
71 domentr 𝒫 A ⊔︀ B 𝒫 B ⊔︀ 𝒫 B 𝒫 B ⊔︀ 𝒫 B 𝒫 B 𝒫 A ⊔︀ B 𝒫 B
72 62 70 71 syl2anc ω A A GCH B GCH A B 𝒫 A ⊔︀ B 𝒫 B
73 gchor B GCH ¬ B Fin B 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 B B 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 B
74 3 22 49 72 73 syl22anc ω A A GCH B GCH A B B 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 B
75 7 45 74 mpjaod ω A A GCH B GCH A B 𝒫 A B
76 75 ex ω A A GCH B GCH A B 𝒫 A B
77 reldom Rel
78 77 brrelex1i 𝒫 A B 𝒫 A V
79 pwexb A V 𝒫 A V
80 canth2g A V A 𝒫 A
81 79 80 sylbir 𝒫 A V A 𝒫 A
82 78 81 syl 𝒫 A B A 𝒫 A
83 sdomdomtr A 𝒫 A 𝒫 A B A B
84 82 83 mpancom 𝒫 A B A B
85 76 84 impbid1 ω A A GCH B GCH A B 𝒫 A B