Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|
2 |
1
|
pwexd |
|
3 |
|
simpl3 |
|
4 |
|
djudoml |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
domen2 |
|
7 |
5 6
|
syl5ibrcom |
|
8 |
|
djucomen |
|
9 |
3 2 8
|
syl2anc |
|
10 |
|
entr |
|
11 |
10
|
ex |
|
12 |
9 11
|
syl |
|
13 |
|
ensym |
|
14 |
|
endom |
|
15 |
13 14
|
syl |
|
16 |
12 15
|
syl6 |
|
17 |
|
domsdomtr |
|
18 |
17
|
3ad2antl1 |
|
19 |
|
sdomnsym |
|
20 |
18 19
|
syl |
|
21 |
|
isfinite |
|
22 |
20 21
|
sylnibr |
|
23 |
|
gchdjuidm |
|
24 |
3 22 23
|
syl2anc |
|
25 |
|
pwen |
|
26 |
|
domen1 |
|
27 |
24 25 26
|
3syl |
|
28 |
|
pwdjudom |
|
29 |
|
canth2g |
|
30 |
|
sdomdomtr |
|
31 |
30
|
ex |
|
32 |
3 29 31
|
3syl |
|
33 |
|
gchi |
|
34 |
33
|
3expia |
|
35 |
34
|
3ad2antl2 |
|
36 |
|
isfinite |
|
37 |
|
simpl1 |
|
38 |
|
domnsym |
|
39 |
37 38
|
syl |
|
40 |
39
|
pm2.21d |
|
41 |
36 40
|
syl5bi |
|
42 |
32 35 41
|
3syld |
|
43 |
28 42
|
syl5 |
|
44 |
27 43
|
sylbird |
|
45 |
16 44
|
syld |
|
46 |
|
djudoml |
|
47 |
3 2 46
|
syl2anc |
|
48 |
|
domentr |
|
49 |
47 9 48
|
syl2anc |
|
50 |
|
sdomdom |
|
51 |
50
|
adantl |
|
52 |
|
pwdom |
|
53 |
51 52
|
syl |
|
54 |
|
djudom1 |
|
55 |
53 3 54
|
syl2anc |
|
56 |
|
sdomdom |
|
57 |
3 29 56
|
3syl |
|
58 |
3
|
pwexd |
|
59 |
|
djudom2 |
|
60 |
57 58 59
|
syl2anc |
|
61 |
|
domtr |
|
62 |
55 60 61
|
syl2anc |
|
63 |
|
pwdju1 |
|
64 |
3 63
|
syl |
|
65 |
|
gchdju1 |
|
66 |
3 22 65
|
syl2anc |
|
67 |
|
pwen |
|
68 |
66 67
|
syl |
|
69 |
|
entr |
|
70 |
64 68 69
|
syl2anc |
|
71 |
|
domentr |
|
72 |
62 70 71
|
syl2anc |
|
73 |
|
gchor |
|
74 |
3 22 49 72 73
|
syl22anc |
|
75 |
7 45 74
|
mpjaod |
|
76 |
75
|
ex |
|
77 |
|
reldom |
|
78 |
77
|
brrelex1i |
|
79 |
|
pwexb |
|
80 |
|
canth2g |
|
81 |
79 80
|
sylbir |
|
82 |
78 81
|
syl |
|
83 |
|
sdomdomtr |
|
84 |
82 83
|
mpancom |
|
85 |
76 84
|
impbid1 |
|