Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|
2 |
1
|
a1i |
|
3 |
|
xpsneng |
|
4 |
2 3
|
sylan2 |
|
5 |
4
|
ensymd |
|
6 |
|
df1o2 |
|
7 |
|
id |
|
8 |
|
0fin |
|
9 |
7 8
|
eqeltrdi |
|
10 |
9
|
necon3bi |
|
11 |
10
|
adantl |
|
12 |
|
0sdomg |
|
13 |
12
|
adantr |
|
14 |
11 13
|
mpbird |
|
15 |
|
0sdom1dom |
|
16 |
14 15
|
sylib |
|
17 |
6 16
|
eqbrtrrid |
|
18 |
|
xpdom2g |
|
19 |
17 18
|
syldan |
|
20 |
|
endomtr |
|
21 |
5 19 20
|
syl2anc |
|
22 |
|
canth2g |
|
23 |
22
|
adantr |
|
24 |
|
sdomdom |
|
25 |
23 24
|
syl |
|
26 |
|
xpdom1g |
|
27 |
25 26
|
syldan |
|
28 |
|
pwexg |
|
29 |
28
|
adantr |
|
30 |
|
xpdom2g |
|
31 |
29 25 30
|
syl2anc |
|
32 |
|
domtr |
|
33 |
27 31 32
|
syl2anc |
|
34 |
|
simpl |
|
35 |
|
pwdjuen |
|
36 |
34 35
|
syldan |
|
37 |
36
|
ensymd |
|
38 |
|
gchdjuidm |
|
39 |
|
pwen |
|
40 |
38 39
|
syl |
|
41 |
|
entr |
|
42 |
37 40 41
|
syl2anc |
|
43 |
|
domentr |
|
44 |
33 42 43
|
syl2anc |
|
45 |
|
gchinf |
|
46 |
|
pwxpndom |
|
47 |
45 46
|
syl |
|
48 |
|
ensym |
|
49 |
|
endom |
|
50 |
48 49
|
syl |
|
51 |
47 50
|
nsyl |
|
52 |
|
brsdom |
|
53 |
44 51 52
|
sylanbrc |
|
54 |
21 53
|
jca |
|
55 |
|
gchen1 |
|
56 |
54 55
|
mpdan |
|
57 |
56
|
ensymd |
|