Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ge0div
Next ⟩
divgt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
ge0div
Description:
Division of a nonnegative number by a positive number.
(Contributed by
NM
, 28-Sep-2005)
Ref
Expression
Assertion
ge0div
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
A
↔
0
≤
A
B
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
lediv1
⊢
0
∈
ℝ
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
A
↔
0
B
≤
A
B
3
1
2
mp3an1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
A
↔
0
B
≤
A
B
4
3
3impb
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
A
↔
0
B
≤
A
B
5
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
6
gt0ne0
⊢
B
∈
ℝ
∧
0
<
B
→
B
≠
0
7
div0
⊢
B
∈
ℂ
∧
B
≠
0
→
0
B
=
0
8
5
6
7
syl2an2r
⊢
B
∈
ℝ
∧
0
<
B
→
0
B
=
0
9
8
breq1d
⊢
B
∈
ℝ
∧
0
<
B
→
0
B
≤
A
B
↔
0
≤
A
B
10
9
3adant1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
B
≤
A
B
↔
0
≤
A
B
11
4
10
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
A
↔
0
≤
A
B