Metamath Proof Explorer


Theorem ge0gtmnf

Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion ge0gtmnf A * 0 A −∞ < A

Proof

Step Hyp Ref Expression
1 mnflt0 −∞ < 0
2 mnfxr −∞ *
3 0xr 0 *
4 xrltletr −∞ * 0 * A * −∞ < 0 0 A −∞ < A
5 2 3 4 mp3an12 A * −∞ < 0 0 A −∞ < A
6 5 imp A * −∞ < 0 0 A −∞ < A
7 1 6 mpanr1 A * 0 A −∞ < A